A R T I C L E S
Yin et al.
in iron lipoxygenases, the FeIII-OH moiety has most recently
been suggested as the key active species for hydrogen abstraction
from 1,4-diene-containing fatty acids to form alkyl hydroper-
oxides.4 A similar issue occurs in the redox reactions involving
manganese. The MnVdO function is generally believed to serve
as the key active species in a series of oxygen transfer
process,5b,c,7 whereas a MnIII-OH moiety has recently been
assigned responsibility for hydrogen abstraction in manganese
lipoxygenases.8 In addition to these manganese reactants, a
manganese(III)/manganese(II) couple has been credited with
lignin degradation in manganese peroxidases, although no
evidence was provided to determine whether MnIIIdO or
MnIII-OH served as the active species.9 Clarifying the reactivity
differences among these active intermediates would provide a
basis for enhanced understanding of nature’s redox enzymes
and the knowledge for matching catalyst systems to targeted
oxidation processes. Unfortunately, prior to our preliminary
results10 and the detailed work presented here, there was no
reported example of precisely related MnIIIdO or MnIII-OH
moieties to address this broadly significant issue. The major
obstacle has been that it is difficult to produce an effective
platform, that is, an uncomplicated high valent metal complex
of manganese or iron within which the metal oxo and the metal
hydroxo groups could be alternatively generated and manipu-
lated in confidence, using a single central metal ion with
identical oxidation states and an otherwise identical coordination
sphere. The difficulty exists because such high oxidation state
iron and manganese ion moieties (MdO and M-OH) have great
tendencies to form µ-oxo bridged dimers and/or higher oligo-
mers. Following our preliminary publication,10 Fujii, et al.,
reported solution studies on the physical chemical property
differences between OdMnIV(salen), HO-MnIV(salen) and
H2O-MnIV(salen) using various spectroscopic techniques. How-
ever, the poor oxidizing capability of HO-MnIV(salen) and
H2O-MnIII(salen+·) prevented their investigation of the reactiv-
ity differences between the corresponding reaction centers,
Figure 1. The structure of MnII(Me2EBC)Cl2.
OdMnIV(salen) and HO-MnIV(salen), although OdMn(salen)
demonstrated its ability to abstract hydrogen from cyclohex-
ene.11
In these laboratories, a series of transition metal complexes
having rare abilities to host stable MnIVdO and MnIVOH
functional groups has been successfully developed with ultra
rigid ethylene cross-bridged macrocyclic ligands.12 Compared
with other ligands, these cross-bridged macrocycles produce
manganese(II) complexes having extreme kinetic stability in
both acidic and basic media, despite the well-known lability of
the high-spin d5 Mn2+ ion. The complexes have rich redox
chemistries and an industrial partner has demonstrated their
excellent catalytic oxidation activity in demanding applications,
for example in home care products.13 Specifically, the manga-
nese complex, Mn(Me2EBC)Cl2, in which Me2EBC is 4,11-
dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Figure 1),
demonstrated unexpected selectivity when epoxidizing olefins
with hydrogen peroxide. Epoxidations by transition metal ions
known for readily displaying a range of oxidation states, such
as manganese, have most often been attributed to the oxygen
rebound mechanism, in which oxygen atom transfer is ac-
companied by 2-electron reduction of the metal ion.5e
(5) (a) Selected examples: (a) Garrison, J. M. ; Bruice, T. C. J. Am. Chem.
Soc. 1989, 111, 191. (b) Adam, W.; Roschmann, K. J.; Saha-Mo¨ller,
C. R.; Seebach, D. J. Am. Chem. Soc. 2002, 124, 5068. (c) Finney,
N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen,
K. B.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1720.
(d) Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Brauman, J. I.
J. Am. Chem. Soc. 2000, 122, 11098. (e) Groves, J. T. J. Chem. Educ.
1985, 65, 928.
The capabilities of the high valent intermediates in these
complexes include 1-electron oxidations as well, often limiting
their selectivities. Detailed studies with the Mn(Me2EBC)Cl2
catalyst system found the origin of this selectivity to be
mechanistic with the epoxidation occurring by a Lewis acid
(6) (a) Bach, R. D.; Su, M. D.; Andres, J. L.; Schlegel, H. B. J. Am.
Chem. Soc. 1993, 115, 8763. (b) Nam, W.; Ho, R.; Valentine, J. S.
J. Am. Chem. Soc. 1991, 113, 7052. (c) Sam, J. W.; Tang, X. J.;
Peisach, J. J. Am. Chem. Soc. 1994, 116, 5250. (d) Ho, R. Y. N.;
Roelfes, G.; Feringa, B. L.; Que, L., Jr. J. Am. Chem. Soc. 1999, 121,
264. (e) Nam, W.; Lim, M. H.; Lee, H. J.; Kim, C. J. Am. Chem. Soc.
2000, 122, 6641. (f) Wadhwani, P.; Mukherjee, M.; Bandyopadhyay,
D. J. Am. Chem. Soc. 2001, 123, 12430. (g) Kim, C.; Chen, K.; Kim,
J.; Que L., Jr, J. Am. Chem. Soc. 1997, 119, 5964. (h) Avila, L.; Huang,
H.; Damaso, C. O.; Lu, S.; Moe¨nne-Loccoz, P.; Rivera, M. J. Am.
Chem. Soc. 2003, 125–4103.
(11) Kurahashi, T.; Kikuchi, A.; Tosha, T.; Shiro, Y.; Kitagawa, T.; Fujii,
H. Inorg. Chem. 2008, 47, 1674.
(12) (a) Hubin, T. J.; McCormick, J. M.; Collinson, S. R.; Buchalova, M.;
Perkins, C. M.; Alcock, N. W.; Kahol, P. K.; Raghunathan, A.; Busch,
D. H. J. Am. Chem. Soc. 2000, 122, 2512. (b) Hubin, T. J.;
McCormick, J. M.; Collinson, S. R.; Alcock, N. W.; Clase, H. J.;
Busch, D. H. Inorg. Chim. Acta 2003, 346, 76. (c) Collinson, S. R.;
Alcock, N. W.; Hubin, T. J.; Busch, D. H. J. Coord. Chem. 2001, 52,
317. (d) Collinson, S. R.; Alcock, N. W.; Raghunathan, A.; Kahol,
P. K.; Busch, D. H. Inorg. Chem. 2000, 39, 757. (e) Hubin, T. J;
McCormick, J. M.; Alcock, N. W.; Busch, D. H. Inorg. Chem. 2001,
40, 435.
(7) (a) Meunier, B.; Guilmet, E.; De Carvalho, M.; Poilblanc, R. J. Am.
Chem. Soc. 2000, 122, 2675. (b) Battioni, P.; Renaud, J. P.; Bartoli,
J. F.; Reina-Arilles, M.; Fort, M.; Mansuy, D. J. Am. Chem. Soc. 1988,
110, 8462. (c) Siegbahn, P. E. M.; Crabtree, R. H. J. Am. Chem. Soc.
1999, 121, 117. (d) Wessel, J.; Crabtree, R. H. J. Mol. Catal., A 1996,
113, 13.
(8) (a) Su, C.; Oliw, E, H J. Biol. Chem. 1998, 273, 13072. (b) Goldsmith,
C. R.; Cole, A. P.; Stack, T. D. P. J. Am. Chem. Soc. 2005, 127, 9904.
(9) (a) ten Have, R.; Teunissen, P. J. M. Chem. ReV. 2001, 101, 3397. (b)
Pecoraro, V. L., Ed. Manganese Redox Enzymes; VCH: New York,
1992.
(10) Yin, G.; Danby, A. M.; Kitko, D.; Carter, J. D.; Scheper, W. M.; Busch,
D. H. J. Am. Chem. Soc. 2007, 129, 1512.
(13) (a) Busch, D. H.; Collinson, S. R.; Hubin, T. J.; Labeque, R.; Williams,
B. K.; Johnston, J. P.; Kitko, D. J.; St. Laurent, J. C. T. R. B.; Perkins,
C. M. Bleach Compositions Containing Metal Bleach Catalyst for
Detergents. WO 98/39406. (b) Busch, D. H.; Collinson, S. R.; Hubin,
T. J. Catalysts and Methods for Catalytic Oxidation. WO98/39098,
Sept 11, 1998.
9
16246 J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008