Journal of Agricultural and Food Chemistry
ARTICLE
DCPPM isomers were located at the active site of ANL and
were surrounded by several residues: His285, Ser173, Arg108,
Trp116, and Lys114. (S)-DCPPM (Figure 9a) was located at the
active site of ANL and formed three hydrogen bonds with ANL,
including the catalytic hydrogen bonds formed with His285 and
with Ser173. However, (R)-DCPPM (Figure 9b) only has one
hydrogen bond with Arg108, and it did not form hydrogen bonds
with catalytic His285 or Ser173. The hydrolysis experiment
showed that ANL is enantioselective for (S)-DCPPM more than
(9) Liu, H. J.; Xiong, M. Y. Comparative toxicity of racemic meto-
lachlor and S-metolachlor to Chlorella pyrenoidosa. Aquat. Toxicol. 2009,
3, 100–106.
9
(10) Diao, J. L.; Xu, P.; Wang, P.; Lu, D. H.; Lu, Y. L.; Zhou, Z. Q.
Enantioselective degradation in sediment and aquatic toxicity to Daph-
nia magna of the herbicide lactofen enantiomers. J. Agric. Food Chem.
2
010, 58, 2439–2445.
11) Muller, T. A.; Kohler, H. P. E. Chirality of pollutants-effects on
metabolism and fate. Appl. Microbiol. Biotechnol. 2004, 64, 300–316.
12) Zhou, Q. Y.; Liu, W. P.; Zhang, Y. S.; Liu, K. K. Action
(
(
(
R)-DCPPM. This difference in hydrolysis of (R)- and (S)-
mechanisms of acetolactate synthase-inhibiting herbicides. Pestic. Bio-
DCPPM isomers by ANL is possibly due to the lack of hydrogen
bond interactions between (R)-DCPPM and catalytic His285
and Ser173. Therefore, the specific hydrogen bond interactions
between DCPPM and catalystic residues of ANL are essential for
the enantioselective hydrolysis of DCPPM. The modification of
these essential residues may change the binding mode of ANL to
DCPPM and cause conformational changes of the ANL enzyme,
thus, leading to the loss of enantioselectivity.
chem. Phys. 2007, 89, 89–96.
(13) Wen, Y. Z.; Yuan, Y. L.; Chen, H.; Wang, H. L.; Liu, H. J.; Kang,
X. D.; Fu, L. S. Spectroscopic investigations of the chiral interactions of
metolachlor and its (S)-isomer with lipase and phosphatase. J. Environ.
Sci. B 2010, 45, 249–253.
(14) Horvat, C. M.; Wolfenden, R. V. A persistent pesticide residue
and the unusual catalytic proficiency of a dehalogenating enzyme. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 16199–16202.
(15) Margesin, R.; Zimmerbauer, A.; Schinner, F. Soil lipase activity:
a useful indicator of oil biodegradation. Biotechnol. Tech. 1999, 13,
859–863.
’
AUTHOR INFORMATION
(
16) Sonnet, P. E.; Gazzillo, J. A. Evaluation of lipase selectivity of
hydrolysis. J. Am. Oil Chem. Soc. 1991, 68, 11–15.
17) Strohalm, H.; Dold, S.; Pendzialek, K.; Weiher, M.; Engel, K. H.
Corresponding Author
*
Tel: þ86-571-8898-2344. Fax: þ86-571-8898-2344. E-mail:
(
shulin@zju.edu.cn.
Preparation of passion fruit-typical 2-alkyl ester enantiomers via
lipase-catalyzed kinetic resolution. J. Agric. Food Chem. 2010, 58,
Funding Sources
6
328–6333.
18) Lundblad, R. L. Chemical Reagents for Protein Modification; CRC
We acknowledge the financial support from the National Natural
Science Foundation of China (No.20977078), the Fundamental
Research Funds for the Central Universities and Scientific
Research Foundation for Returned Overseas Chinese Scholars,
State Education Ministry, China.
(
press: Boca Raton, FL, 1991; pp 129-215.
(19) Palomo, J. M.; Fernandez-lorente, G.; Guisan, J. M.; Fernandez-
lafuente, R. Modulation of immobilized lipase enantioselectivity via
chemical amination. Adv. Synth. Catal. 2007, 349, 1119–1127.
(20) Ma, Y.; Xu, C.; Wen, Y. Z.; Liu, W. P. Enantioselective
separation and degradation of the herbicide dichlorprop methyl in
sediment. Chirality 2009, 21, 480–483.
’
ABBEVIATIONS USED
DCPPM, 2, 4-dichlorprop-methyl; ANL, Aspergillus niger lipase;
BrAc, bromoacetic acid; BD, 2,3-butanedione; NBS, N-bromo-
succinimide; His, histidine; Arg, arginine; Try, tryptophan; Lys,
lysine; FDA, fluoresceindiacetate.
(21) Camps, P.; Perez, F.; Soldevilla, N. (R)- and (S)-3-hydroxy-4,4-
dimethyl-1-phenyl-2-pyrrolidinone as chiral auxiliaries in the enantio-
selective preparation of alpha-aryloxypropanoic acid herbicides and alpha-
chlorocarboxylic acids. Tetrahedron: Asymmetry 1998, 9, 2065–2079.
(22) Xie, X. L.; Du, J.; Huang, Q. S.; Shi, Y.; Chen, Q. X. Inhibitory
kinetics of bromacetic acid on ss-N-acetyl-D-glucosaminidase from prawn
’
REFERENCES
(
Penaeus vannamei). Int. J. Biol. Macromol. 2007, 41, 308–313.
(
1) Garrison, A. W. Probing the Enantioselectivity of Chiral Pesti-
cides. Environ. Sci. Technol. 2006, 40, 16–23.
2) Wen, Y. Z.; Yuan, Y. L.; Shen, C. S.; Liu, H. J.; Liu, W. P.
(23) Patthy, L.; Smith, E. L. Reversible modification of arginine
residues. Application to sequence studies by restriction of tryptic
hydrolysis to lysine residues. J. Biol. Chem. 1975, 250, 557–564.
(24) Freisheim, J. H.; Huennekens, F. M. Folic acid coenzymes and
one-carbon metabolism. XXV. Effect of N-bromosuccinimide on dihy-
drofolate reductase. Biochemistry 1969, 8, 2271–2276.
(
Spectroscopic investigations of the chiral interactions between lipase
and the herbicide dichlorprop. Chirality 2009, 21, 396–401.
(
3) Lewis, D. L.; Garrison, A. W.; Wommack, K. E.; Whittemore, A;
Steudler, P; Mellilo, J. Influence of environmental changes on degrada-
tion of chiral pollutants in soils. Nature 1999, 401, 898–901.
(25) Chen, Q.; Liao, J. H.; Wang, Q.; Chen, Q. X. Studies on the
essential groups of the alkaline phosphatase from Ostrea cucullate. J.
Xiamen Univ. (Nat. Sci.) 2004, 43, 702–705.
(4) Wen, Y. Z.; Yuan, Y. L.; Chen, H.; Xu, D. M.; Lin, K. D.; Liu,
W. P. Effect of chitosan on the enantioselective bioavailability of the
herbicide dichlorprop to Chlorella pyrenoidosa. Environ. Sci. Technol.
(26) Fang, Z. H.; Wen, Y. Z.; Liu, W. P. Influence of kaolinite on
chiral hydrolysis of methyl dichlorprop enantiomers. J. Zhejiang Univ.
SCI. 2005, 6B, 1028–1032.
2
010, 44, 4981–4987.
(
5) Liu, W. P.; Gan, J. Y.; Schlenk, D.; Jury, W. A. Enantioselectivity
(27) Zhang, Y. I-TASSER server for protein 3D structure prediction.
BMC Bioinf. 2008, 9, 40.
(28) I-TASSER. http://zhanglab.ccmb.med.umich.edu/I-TASSER/.
(29) Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: a unified platform
for automated protein structure and function prediction. Nat Protoc.
2010, 5 (4), 725–738.
in environmental safety of current chiral insecticides. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 701–706.
(6) Buser, H. R.; Muller, M. D.; Poiger, T.; Balmer, M. E. Environ-
mental behavior of the chiral acetamide pesticide metalaxyl: enantio-
selective degradation and chiral stability in soil. Environ. Sci. Technol.
2
002, 36, 221–226.
(30) Prosa web server. https://prosa.services.came.sbg.ac.at/prosa.php.
(31) Wiederstein, M.; Sippl, M. J. ProSA-web: interactive web
service for the recognition of errors in three-dimensional structures of
proteins. Nucleic Acids Res. 2007, 35 (Suppl. 2), W407–410.
(32) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748.
(
7) Williams, G. M.; Harrison, I.; Carlick, C. A.; Crowley, O.
Changes in enantiomeric fraction as evidence of natural attenuation of
mecoprop in a limestone aquifer. J.Contam. Hydrol. 2003, 64, 253–267.
(8) Li, H; Yuan, Y. L.; Shen, C. S.; Wen, Y. Z.; Liu, H. J. Enantio-
selectivity in toxicity and degradation of dichlorprop-methyl in algal
cultures. J. Environ. Sci. B 2008, 43, 288–292.
1
929
dx.doi.org/10.1021/jf104500h |J. Agric. Food Chem. 2011, 59, 1924–1930