Ca Pt al el ya ss ies d So c ni eo nt ca ed j&u s Tt emc ah rng oi nl os gy
Page 6 of 8
ARTICLE
Journal Name
reaction time (10 ‐ 48 h), the resultant solution was cooled to room Z, ‐K. Yu, Tetrahedron Lett. 2014, 55, 1585.(f) F. SaleeVmiew, AGrt.icKle.ORnalinoe,
temperature and the reaction mixture filtered through a plug of A. Kumar, G. Mukherjee and A. K. Singh, OrDgaOnI:o1m0.e10ta3l9li/cCs7C20Y01043,4323K,
silica gel and then analyzed by GC using dodecane as an internal 2341.
1
1c,e
standard,
employing an OV‐1701 column column on Agilent 6. R. H. Crabtree, Chem. Rev., 2017 DOI: 10.1021 / acs. chemrev.
6820 instrument.
6b00556.
7. (a) A. Dobson, S. D. Robinson, Inorg. Chem. 1977, 16, 137. (b) A.
X‐ray Structure Determination
Dobson, S. D. Robinson, J. Organomet. Chem. 1975, 87, 52.
. (a) D. Morton, D. J. Cole‐Hamilton, I. D. Utuk, M. Paneque‐Sosa,
M. Lopez‐Poveda, J. Chem. Soc. Dalton Trans. 1989, 489. (b) D.
Morton, D. J. Cole‐Hamilton, J. Chem. Soc. Chem. Commun. 1988,
8
A single‐crystal X‐ray diffraction study of C was conducted on a
Rigaku Sealed Tube CCD (Saturn 724+) diffractometer with graphite‐
monochromated Mo‐Kα radiation (λ = 0.71073 Å) at 173(2) K. Cell
parameters were obtained by global refinement of the positions of
all collected reflections (see Table S3 in SI). Intensities were
corrected for Lorentz and polarization effects and empirical
absorption. The structures were solved by direct methods and
refined by full‐matrix least squares on F . All non‐hydrogen atoms
were refined anisotropically and all hydrogen atoms were placed in
calculated positions. Using the SHELXL‐97 package, structural
solution and refinement were performed.
1
154. (c) D. Morton, D. J Cole‐Hamilton, J. Chem. Soc. Chem.
Commun.1987, 248.
. (a) C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024. (b)
9
K‐N. T. Tseng, J. W. Kampf, N. K. Szymczak, Organometallics 2013,
32, 2046. (c) A. Friedrich, S. Schneider, ChemCatChem 2009, 1, 72.
2
(d) G. E. Dobereiner, , R. H. Crabtree Chem. Rev. 2010, 110, 681. (e)
J. H. Choi, N. Kim, Y. J. Shin, J. H. Park, J. Park, Tetrahedron Lett.
2004, 45, 4607. (f) G. R. A. Adair, J. M. J. Williams, Tetrahedron Lett.
2
0
2005, 46, 8233. (g) J. Zhang, M. Gandelman, L. J. W. Shimon, R H.
ozenberg, D. Milstein, Organometallics 2004, 23, 4026. (h) J. Zhang,
M. Gandelman, L. J. W. Shimon, H. Rozenberg, D. Milstein, Dalton
Trans.2007, 107. (i) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord.
Chem. Rev. 2004, 248, 2201. (j) C. Gunanathan, D. Milstein, Science
Acknowledgements
We acknowledge support from the National Natural Science
Foundation of China (21476060 and U1362204) and the Nature
Science Foundation of Hebei Province (B2014205049). G.A.S. thanks
the Chinese Academy of Sciences for a Visiting Scientist Fellowship.
2013, 341, 1229712. (k) M. Nielsen, A. Kammer, D. Cozzula, H. Junge,
S. Gladiali, M. Beller, Angew. Chem., Int. Ed. 2011, 50, 9593. (l) M.
Nielsen, E. Alberico. W. Baumann, H.‐J. Drexler, H. Junge, S. Gladiali,
M. Beller, Nature 2013, 495, 85.(m) J. J. Cheng, M. J. Zhu, C. Wang, J.
J. Li, X. Jiang, Y. W. Wei, W. J. Tang, D. Xue, J. L. Xiao, Chem. Sci.
Notes and references
2016, 7, 4428.
1. (a) G. Procter, In Comprehensive Organic Synthesis; Ley, S. V., Ed.;
10. (a) K. Fujita, N. Tanino, R. Yamaguchi, Org. Lett.2007. 9, 109. (b)
Pergamon: Oxford, 1991; Vol. 7, p 305. (b) M. E. Pierce, G. D. Harris,
Q. Islam, L. A. Radesca, L. Storace, R. E. Waltermire, E. Wat, P. K.
Jadhav, G. C. Emmett, J. Org. Chem.1996, 61, 444. (c) P. N.
Confalone, R. E. Waltermire, In Process Chemistry in the
Pharmaceutical Industry; Gadamasetti, K. G., Ed.; Marcell Dekker,
Inc.: New York, NY, 1999; pp 205.
K. Fujita, T. Yoshida, Y. Imori, R. Yamaguchi, Org. Lett. 2011, 13,
278. (c) A. V. Polukeev, P. V. Petrovskii, A. S. Peregudov, M. G.
2
Ezernitskaya, A. A. Koridze, Organometallics 2013, 32, 1000. (d) A.
H. Ngo, M. J. Adams, L. H. Do, Organometallics 2014, 33, 6742. (e) S.
Musa, I. Shaposhnikov, S. Cohen, D. Gelman, Angew. Chem. Int. Ed.
2
1
1
011, 50, 3533.
2
.(a) K Bowden, I. M. Heilbrone, R. H. Jones and B. C. L. Weedon, J.
Chem. Soc. 1946, 39. (b) H. Bowers, L. Jones, J. Chem. Soc. 1953,
548. (c) P. H. J. Carlsen, T. Katsuki, V. S. Martin, , K. B. Sharpless J.
1. (a) W. Baratta, G. Bossi, E. Putignano, P. Rigo, Chem. Eur. J. 2011,
7, 3474. (b) J. Zhang, E. Balaraman, G. Leitus, D. Milstein,
2
Organometallics 2011, 30, 5716. (c) S. Muthaiahb, S. H. Honga, Adv.
Synth. Catal. 2012, 354, 3045. (d) J. Yuan, Y. Sun, G. Yu, C. Zhao, N.
She, S. Mao, P. Huang, Z. Han, J. Yina, S. Liu, Dalton Trans. 2012, 41,
Org. Chem. 1981, 46, 3936. (d) P. L. Anelli, C. Biffi, F. Montanari, S.
Quici, J. Org. Chem. 1987, 52, 2559. (e) T. Miyazawa, T. Endo, S.
Shiihashi, M. Okawara, J. Org. Chem. 1985, 50, 1332. (f) S. D.
Rychnovsky, R. Vaidyanathan, J. Org. Chem. 1999, 64, 310. (g) E.
Fritz‐Langhals, J. Stohrer, H. Petersen, Pat: US 2003073871 (A1).
1
0309. (e) S. Shahane, C. Fischmeister, C. Bruneau, Catal. Sci.
Technol. 2012, 2, 1425.
2. (a) W.‐H. Kim, I. S. Park, J. Park, Org. Lett. 2006, 8, 2543. (b) T.
1
3.(a) R. A. Sheldon, I. W. C. E. Arends, G.‐J.T. Brink, A. Dijksman, Acc.
Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Angew. Chem. Int. Ed. 2008, 47, 138. (c) T. Mitsudome, Y.
Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem.
Commun. 2008, 4804. (d) K. Shimizu, K. Sugino, K. Sawabe, A.
Satsuma, Chem. Eur. J. 2009, 15, 2341. (e) K. Shimizu, K. Kon, K.
Shimura, S. S. M. A Hakim, J. Catal. 2013, 300, 242.(f) K. Shimizu, K.
Kon, M. Seto, K. Shimura, H. Yamazakic, J. N. Kondo, Green Chem.
Chem. Res. 2002, 35, 774. (b) I. E. Markó, P. R. Giles, M. Tsukazaki, S.
M. Brown, C. Urch, J. Science 1996, 274, 2044. (c) M. S. Sigman, D. R.
Jensen, Acc. Chem. Res. 2006, 39, 221. (d) G. Csjernyik, A. H. Éll, L.
Fadini, B. Pugin, J.‐E. Bäckvall, J. Org. Chem. 2002, 67, 1657. (e) B.
Jiang, Y. Feng, E. A. Ison, J. Am. Chem. Soc. 2008, 130, 14462.
4.(a) G. Barak, J. Dakka, Y. Sasson, J. Org. Chem. 1988, 53, 3553. (b)
K. Sato, M. Aoki, J. Takagi, R. Noyori, J. Am. Chem. Soc. 1997, 119,
2013, 15, 418. (g) D. Damodara, R. Arundhathi, P. R. Likhara, Adv.
1
5
2386. (c) R. Noyori, M. Aoki, K. Sato, Chem. Commun. 2003, 1977.
. (a) M. L. S. Almeida, M. Beller, G.‐Z. Wang, J. ‐E. Bäckvall, Chem.
Synth. Catal. 2014, 356, 189. (h) J. Yi, J. T. Miller, D. Y. Zemlyanov, R.
Zhang, P. J. Dietrich, F. H. Ribeiro, S. Suslov, M. M. Abu‐Omar,
Angew. Chem. Int. Ed. 2014, 53, 833.
Eur. J. 1996, 2, 1533. (b) F. Hanasaka, K. Fujita, R. Yamaguchi,
Organometallics 2005, 24, 3422. (c) S. A. Moyer, T. W. Funk,
Tetrahedron Lett. 2010, 51, 5430. (d) Q. Wang, W. Du, T. Liu, H. Chai,
1
5
3. (a) B. Gnanaprakasam, D. Milstein, Acc. Chem. Res. 2011, 44,
88. (b) C. Gunanathan, Y. Ben‐David, D. Milstein, Science 2007, 317,
6
| J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins