Dalton Transactions p. 3862 - 3876 (2015)
Update date:2022-08-29
Topics:
Hazari, Alokesh
Kanta Das, Lakshmi
Kadam, Ramakant M.
Bauz, Antonio
Frontera, Antonio
Ghosh, Ashutosh
Three new mixed valence trinuclear Co(ii/iii) compounds cis-[Co3L2(MeOH)2(N3)2(μ1,1-N3)2] (1), trans-[Co3L2(H2O)2(N3)2(μ1,1-N3)2]·(H2O)2 (2) and [Co3LR2(N3)3(μ1,3-N3)] (3) have been synthesized by reacting a di-Schiff base ligand (H2L) or its reduced form [H2LR] (where H2L = N,N′-bis(salicylidene)-1,3-propanediamine and H2LR = N,N′-bis(2-hydroxybenzyl)-1,3-propanediamine) with cobalt perchlorate hexahydrate and sodium azide. All three products have been characterized by IR, UV-Vis and EPR spectroscopies, ESI-MS, elemental, powder and single crystal X-ray diffraction analyses. Complex 1 is an angular trinuclear species in which two terminal octahedral Co(iii)N2O4 centers coordinate to the central octahedral cobalt(ii) ion through μ2-phenoxido oxygen and μ1,1-azido nitrogen atoms along with two mutually cis-oxygen atoms of methanol molecules. On the other hand, in linear trinuclear complex 2, in addition to the μ2-phenoxido and μ1,1-azido bridges with terminal octahedral Co(iii) centres, the central Co(ii) is bonded with two mutually trans-oxygen atoms of water molecules. Thus the cis-trans configuration of the central Co(ii) is solvent dependent. In complex 3, the two terminal octahedral Co(iii)N2O4 centers coordinate to the central penta-coordinated Co(ii) ion through double phenoxido bridges along with the nitrogen atom of a terminal azido ligand. In addition, the two terminal Co(iii) are connected through a μ1,3-azido bridge that participates in pnicogen bonding interactions (intermolecular N-N interaction) as an acceptor. Both the cis and trans isomeric forms of 1 and 2 have been optimized using density functional theory (DFT) calculations and it is found that the cis configuration is energetically more favorable than the trans one. However, the trans configuration of 2 is stabilized by the hydrogen bonding network involving a water dimer. The pnicogen bonding interactions have been demonstrated using MEP surfaces and CSD search which support the counter intuitive electron acceptor ability of the μ1,3-azido ligand. Complexes 1-3 exhibit catecholase-like activities in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone. Kinetic data analyses of this oxidation reaction in acetonitrile reveal that the catecholase-like activity follows the order: 1 (kcat = 142 h-1) > 3 (kcat = 99 h-1) > 2 (kcat = 85 h-1). Mechanistic investigations of the catalytic behaviors by X-band EPR spectroscopy and estimation of hydrogen peroxide formation indicate that the oxidation reaction proceeds through the reduction of Co(iii) to Co(ii). This journal is
View Morewebsite:http://www.np-chem.com
Contact:0086-25-52346877
Address:199, Jian Ye Road, Nanjing, China
Xinji City Taida Sinopec Co., Ltd.
Contact:0086-311-85341278
Address:No.6, Nanhua Road,Xinji City Road,Hebei Province,China
Henan Yellow River New Material Technology Co.Ltd.
website:http://www.yellowriverchem.com
Contact:0086-373-7278760
Address:Chengguan Town, Yuanyang County
SHANDONG CREDAGRI CHEMICAL CO., LTD.
Contact:+86-531-88872050
Address:ROOM 601A, BUILDING 2, SHUNTAI SQUARE, NO. 2000 SHUNHUA ROAD, HI-TECH DEVELOPMENT ZONE, JINAN, CHINA.
Contact:+86-13914766747
Address:Floors 21&22, Jin Cheng Tower, No. 216 Middle Longpan Road, Nanjing
Doi:10.1063/1.2712801
(2007)Doi:10.1063/1.1814429
(2004)Doi:10.1021/ja972141f
(1997)Doi:10.1016/j.catcom.2014.04.016
(2014)Doi:10.1016/j.tet.2007.06.084
(2007)Doi:10.1016/S0008-6215(00)83750-7
(1978)