Journal of Thermal Analysis and Calorimetry p. 1863 - 1882 (2020)
Update date:2022-08-10
Topics:
Atakol, Arda
Nazir, Hasan
Svoboda, Ingrid
Aksu, M. Levent
Atakol, Orhan
Two complexes in NiII–ZnII heterodinuclear form were prepared in DMF medium by the use of an ONNO-type symmetrical Schiff base bis-N,N′(salicylidene)-1,3-diaminopropane (LH2) and the reduced derivative of this ligand bis-N,N′(2-hydroxybenzylidene)-1,3-diaminopropane (LHH2). The fact that the complexes are in [NiL·ZnCl2·DMF2] and [NiLH·ZnCl2·(DMF)2] stoichiometry was verified with elemental and thermogravimetric analyses and IR spectroscopy. The structures of the complexes were determined by the use of X-ray diffraction. The two complexes were very similar, almost isostructure, and it was observed that Ni(II) ions in both complexes coordinated with two phenolic oxygens and two iminic nitrogen of organic ligand and formed an octahedral coordination between two DMF molecules. On the other hand, the Zn(II) ion was observed to be located in a tetrahedral coordination sphere coordinated with two phenolic oxygens between two halides. Although the molecular structures of the complexes are very similar, their thermal properties are quite different from of each other. The decomposition of [NiL·ZnCl2·(DMF)2] was observed between 140 and 190?°C by the removal of coordinative DMF molecules, leaving a residue of a mixture of NiL and ZnCl2 behind. The complex of the reduced ligand [NiLH·ZnCl2·(DMF)2] was observed to be stable up to 250?°C. After this temperature, the coordinative DMF molecules rapidly leave the structure before the degradation of NiLH. That is why the activation energies of the thermal reactions were evaluated by the use of isothermal and nonisothermal kinetic models: Coats–Redfern, Ozawa, Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose. Also the thermal differences between these two complexes were examined by the use of theoretical programs included in Gaussian 09 package. The ground-state energies calculations were carried out by the use of density functional theory method 631G(d) basis set. The calculated theoretical bond energies and angles were observed to be different compared with the experimental data. The HOMO and LUMO values of the complexes were also calculated. The difference between these two complexes was evaluated.
View MoreNanjing HuiBaiShi Biotechnology Co.,Ltd.
Contact:+86 (25)58745219
Address:No.606 Ningliu Road,LiuHe District.
website:http://www.cartoonchem.com/
Contact:+86-25-58074918
Address:Room 2109, RuiHua Business Center,315 South ZhongShan Road, Nanjing 210001, China
guide(suzhou) fine materials co. ltd
Contact:0512-80972173
Address:21st Building, No.369 Lushan Rd, New District Suzhou China 215129
Hubei Lingsheng Pharmaceuticals Co., Ltd.
Contact:+86-0710-3538058
Address:Xiangyang City Xiangcheng Economic Development Zone, Hubei Province
Shanghai Massive Chemical Technology Co., Ltd.
website:http://www.massivechem.com/
Contact:+86 21 34943721
Address:Room 435, 4th floor, Building 9, No. 2568 Gudai Road,Minhang District, Shanghai,
Doi:10.1016/S0040-4020(01)89846-X
(1992)Doi:10.1016/j.molcatb.2012.02.007
(2012)Doi:10.1016/j.bmcl.2013.11.004
(2014)Doi:10.1006/jcht.1995.0059
(1995)Doi:10.1002/anie.201306629
(2013)Doi:10.1021/acs.joc.7b02796
(2018)