Angewandte Chemie International Edition
10.1002/anie.201805467
COMMUNICATION
distributed and exhibited a little differences on the morphology
after six runs. Thereby, it demonstrated that the aggregation and
leaching of active centers did not occurred during
dehydrogenation and transfer hydrogenation.
(21521091, 21390393, U1463202, 21471089, 21671117). We
thank the 1W1B station for XAFS measurement in Beijing
Synchrotron Radiation Facility (BSRF).
Keywords: ordered porous
atomically dispersed sites
hydrogenation or hydrogenation
•
N-doping carbon matrix
•
Since the basic reactions of hydrogenation and
dehydrogenation of quinoline are similar, the hydrogenation
reaction was taken as an example to study the mechanism. To
understand the reaction mechanism and energetics, we carried
out first-principles calculations of 1,2,3,4-tetrahydroquinoline
hydrogenation. Hydrogen was chosen as the reductant to simply
the calculations, and the dissociation of hydrogen was assumed
to be in equilibrium. All the possible pathways were considered,
and the free energy profile of the most favorable pathway are
shown in Figure S17. It can be seen that the reaction starts with
the hydrogenation of N atom in 1,2,3,4-tetrahydroquinoline
forming IM1. Then, the carbon next to nitrogen couples with H
forming partially hydrogenated product (p-product). The rest two
carbon are hydrogenated via intermediate state, IM2, giving the
final product. The hydrogenation of p-product is favorable both
thermodynamically and kinetically, suggesting the p-product is
likely to be hydrogenated on ISAS-Co/OPNC. This finding is in
agreement with the experiment result that no p-product is
detected. Furthermore, all the barriers of the four hydrogen
elementary steps are lower than 0.87 eV, indicating the single
Co site are highly active for the hydrogenation of 1,2,3,4-
tetrahydroquinoline. Interestingly, all the most favorable
transition states are via Eley–Rideal (ER) mechanism, in which
hydrogen is on the Co site and the quinoline species attracts
from gas-phase (Figure S18b). The transition states geometries
of the elementary steps with highest barriers, namely the last
hydrogenation step, via Langmuir–Hinshelwood (LH) and ER
mechanism are shown in Figure S18. The barriers of LH and ER
are calculated to be 1.73 eV and 0.87 eV, indicating ER
mechanism is likely to be dominating in the 1,2,3,4-
tetrahydroquinoline hydrogenation on the ISAS-Co/OPNC.
•
dehydrogenation transfer
•
[
[
[
1] K. Weissermel, H. J. Arpel, Industrial Organic Chemistry; Wiley-VCH:
Weinheim, 2003; pp. 59−89.
2] A. Sartbaeva, V. L. Kuznetsov, S. A. Wells, P. P. Edwards, Energy
Environ. Sci. 2008, 1, 79-85.
3] a) U. Eberle, ꢀ. ꢁelderhoff, ꢁ. Schꢂth, Angew. Chem., Int. Ed. 2009, 48,
6608-6630; b) P. Makowski, A. Thomas, P. Kuhn, P. Goettmann, Energy
Environ. Sci. 2009, 2, 480-490.
[4] a) R. H. Crabtree, Energy Environ. Sci. 2008, 1, 134-138; b) P. Jessop,
Nat. Chem. 2009, 1, 350-351.
[
5] a) R. Yamaguchi, C. Ikeda, Y. Takahashi, and K. Fujita, J. Am. Chem.
Soc. 2009, 131, 8410-8412; b) K. Fujita, Y. Tanaka, M. Kobayashi, and
R. Yamaguchi, J. Am. Chem. Soc. 2014, 136, 4829-4832; c) S.
Chakraborty, W. W. Brennessel, and W. D. Jones, J. Am. Chem. Soc.
2014, 136, 8564-8567.
[
[
6] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-
10274.
7] a) X. Wang, W. X. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. X. Ju, J. C.
Dong, L. R. Zheng, W. S. Yan, X. S. Zheng, Z. J. Li, X. Q. Wang, J.
Yang, D. S. He, Y. Wang, Z. X. Deng, Y. E. Wu, and Y. D. Li, J. Am.
Chem. Soc. 2017, 139, 9419-9422; b) L. C. Bai, X. Wang, Q. Chen, Y. F.
Ye, H. Q. Zheng, J. H. Guo, Y. D. Yin, and C. B. Gao, Angew. Chem., Int.
Ed. 2016, 55, 15656-15661; c) R. Adam, J. R. Cabrero-Antonino, A.
Spannenberg, K. Junge, R. Jackstell, and M. Beller, Angew. Chem., Int.
Ed. 2017, 56, 3216-3220; d) F. Chen, B. Sahoo, C. Kreyenschulte, H.
Lund, M. Zheng, L. He, K. Junge, and M. Beller, Chem. Sci. 2017, 8,
6239-6246; e) Z. Z. Wei, Y. Q. Chen, J. Wang, D. F. Su, M. H. Tang, S.
J. Mao, and Y. Wang, ACS Catal. 2016, 6, 5816-5822.
[
[
[
8] a) X. J. Cui, Y. H. Li, S. Bachmann, M. Scalone, A.-E. Surkus, K. Junge,
C. Topf, and M. Beller, J. Am. Chem. Soc. 2015, 137, 10652-10658; b) A.
V. Iosub, and S. S. Stahl, Org. Lett. 2015, 17, 4404-4407; c) G. Jaiswal,
V. G. Landge, D. Jagadeesan, and E. Balaraman, Nature Commun.
2017, 8, 2147-2160.
9] a) C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste, and G. A. Somorjai, J.
Am. Chem. Soc. 2017, 139, 18084-18092; b) R. B. Xu, S. Chakraborty,
H. M. Yuan, and W. D. Jones, ACS Catal. 2015, 5, 6350-6354; c) S. K.
Moromi, S. M. A. H. Siddiki, K. Kon, T. Toyao, and K. Shimizu, Catal.
Today, 2017, 281 507-511.
10] a) M. L. Zhang, Y. G. Wang, W. X. Chen, J. C. Dong, L. R. Zheng, J. Luo,
J. W. Wan, S. B. Tian, W.-C. Cheong, D. S. Wang, and Y. D. Li, J. Am.
Chem. Soc. 2017, 139, 10976-10979; b) Y. H. Han, Y. G. Wang, W. X.
Chen, R. R. Xu, L. R. Zheng, J. Zhang, J. Luo, R. A. Shen, Y. Q. Zhu,
W.-C. Cheong, C. Chen, Q. Peng, D. S. Wang, and Y. D. Li, J. Am.
Chem. Soc. 2017, 139, 17269-17272; c) X.-F. Yang, A. Wang, B. Qiao, J.
Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740-1748; d) W. G. Liu,
L. L. Zhang, X. Liu, X. Y. Liu, X. F. Yang, S. Miao, W. T. Wang, A. Q.
Wang, and T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790-10798; e) J.
X. Liang, Q. Yu, X. F. Yang, T. Zhang, J. Li, Nano Res. 2018, 11, 1599-
In conclusion, we successfully prepared an atomically dispersed
ISAS-Co/OPNC catalyst, which exhibited highly efficient catalytic
activities for both dehydrogenation of N-heterocycles to release
H
2
and the reverse transfer hydrogenation or hydrogenation of
N-heterocycles to store H with formic acid or external hydrogen
2
as hydrogen source. The catalytic activities for dehydrogenation
and transfer hydrogenation or hydrogenation of N-heterocycles
exceeded the reported homogeneous or heterogeneous noble-
metal catalysts due to the lower barriers via ER mechanism.
Organic materials that are amenable to catalyzed reversible
dehydrogenation/hydrogenation may be used as hydrogen-
1611; f) J. Lin, and X. D. Wang, Sci China Mater. 2017,
https://doi.org/10.1007/s40843-017-9189-7.
storage materials, with potential to generate H
substitute petroleum fuel.
2
and thereby
[
[
11] a) L. L. Lin, W. Zhou, R. Gao, S. Y. Yao, X. Zhang, W. Q. Xu, S. J.
Zheng, Z. Jiang, Q. L. Yu, Y. W. Li, C. Shi, X. D. Wen, and D. Ma,
Nature 2017, 544, 80-83; b) G. Gao, Y. Jiao, E. R. Waclawik, A. Du, J.
Am. Chem. Soc. 2016, 138, 6292-6297.
12] a) H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei,
and J. L. Lu, J. Am. Chem. Soc. 2015, 137, 10484-10487; b) N. C.
Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. W. Xiao,
R. Y. Li, T.-K. Sham, L. M. Liu, G. A. Botton, and X. L. Sun, Nat.
Commun. 2016, 7, 13638-13647.
Acknowledgements
This work was supported by the National Postdoctoral Program
for Innovative Talents (BX201600084), China Ministry of
Science and Technology under Contract of 2016YFA (0202801),
and the National Natural Science Foundation of China
[
13] a) S. Kundu, T. C. Nagaiah, W. Xia, Y. Wang, S. V. Dommele,
J. H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann,
M. Muhler, J. Phys. Chem. C 2009, 113, 14302-14310; b) R. Pietrzak, H.
Wachowska, P. Nowicki, Energy Fuels 2006, 20, 1275-1280; c) F.
This article is protected by copyright. All rights reserved.