Letter
NJC
80 MHz repetition rate. The excitation was focused into the de Calcul Intensif). We also wish to thank Hugo Coupevent and
cuvette through a microscope objective (10Â, NA 0.25). The Axel Lehmann for assistance in the synthesis.
fluorescence was detected in epifluorescence mode via a dichroic
mirror (Chroma 675dcxru) and a barrier filter (Chroma e650sp-2p)
by a compact CCD spectrometer module BWTek BTC112E. Total
Notes and references
‡
Crystal data: C27
1
H18Br N O , M = 672.17, monoclinic, space group
3 3 3
fluorescence intensities were obtained by integrating the corrected
emission.
3
P2 /n, a = 19.931(3) Å, b = 6.4376(9) Å, c = 21.314(3) Å, U = 2684.8(6) Å ,
Z = 4, R = 0. 0978 (see ESI† for details).
X-ray crystallography
1 B. R. Cho, K. H. Son, S. H. Lee, Y. S. Song, Y. K. Lee,
S. J. Jeon, J. H. Choi, H. Lee and M. Cho, J. Am. Chem. Soc.,
Data collection of crystals of 4-Br was performed on a D8
VENTURE AXS diffractometer at 150 K, with graphite mono-
2001, 123, 9412–9417.
2
W. H. Lee, S. H. Lee, J.-A. Kim, J. H. Choi, M. Cho, S.-J. Jeon
and B. R. Cho, J. Am. Chem. Soc., 2001, 123, 10658–10667.
3 F. Terenziani, C. Katan, E. Badaeva, S. Tretiak and M. Blanchard-
Desce, Adv. Mater., 2008, 20, 4641–4678.
G. S. He, L.-S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev.,
2008, 108, 1245–1330.
H. M. Kim and B. R. Cho, Chem. Commun., 2009, 153–164.
R. G. Arnold, J. A. Nelson and J. J. Verbanc, Chem. Rev., 1957,
chromatized MoK
methods using the SIR97 program and subsequently refined
with full-matrix least-square methods based on F (SHELXL-97).
a
radiation. The structure was solved by direct
2
0
2
21
The contribution of the disordered solvents to the calculated
structure factors was estimated following the BYPASS algo-
4
2
2
23
rithm, implemented as the SQUEEZE option in PLATON.
5
6
A new data set, free of solvent contribution, was then used in
the final refinement. All non-hydrogen atoms were refined with
anisotropic atomic displacement parameters. H atoms were
included in the final cycle of refinement in their calculated
57, 47–76.
7
H. Ulrich, The Chemistry and Technology of Isocyanates,
J. Wiley & Sons, New York, 1996.
8 G. Argouarch, R. Veillard, T. Roisnel, A. Amar, A. Boucekkine,
A. Singh, I. Ledoux and F. Paul, New J. Chem., 2011, 35,
2
positions. A final refinement on F with 6191 unique intensities
2
and 295 parameters converged at oR(F ) = 0.1884 (R(F) =
0.0978) for 4555 observed reflections with I 4 2s(I). The data
2409–2411.
have been deposited at the Cambridge Crystallographic Data
Centre (CCDC 1511480).†
9
G. Argouarch, R. Veillard, T. Roisnel, A. Amar, H. Meghezzi,
A. Boucekkine, V. Hugues, O. Mongin, M. Blanchard-Desce
and F. Paul, Chem. – Eur. J., 2012, 18, 11811–11826.
0 Y. Z. Cui, Q. Fang, G. Xue, G. B. Xu, L. Yin and W. T. Yu,
Chem. Lett., 2005, 34, 644–645.
1 J. C. Collings, S.-Y. Poon, C. Le Droumaguet, M. Charlot,
C. Katan, L.-O. Pålsson, A. Beeby, J. A. Mosely, H. M. Kaiser,
D. Kaufmann, W.-Y. Wong, M. Blanchard-Desce and
T. B. Marder, Chem. – Eur. J., 2009, 15, 198–208.
2 C. Irle and W. Mormann, Liq. Cryst., 1996, 21, 295–305.
3 T. Terai, M. Kohno, G. Boncompain, S. Sugiyama, N. Saito,
R. Fujikake, T. Ueno, T. Komatsu, K. Hanaoka, T. Okabe,
Y. Urano, F. Perez and T. Nagano, J. Am. Chem. Soc., 2015,
Computational details
1
1
The DFT calculations reported in this work have been per-
2
4
formed using the Gaussian09 program. The geometries of all
the compounds have been optimized without symmetry con-
2
5
straints using the MPW1PW91 functional and the 6-31G*
basis set. The solvent effects were taken into account (Polariz-
2
6
able Continuum Model). Calculation of the frequencies of
normal modes of vibration were carried out to confirm the true
minima character of the optimized geometries. TD-DFT calcu-
lations were performed at the same level of theory using the
1
1
2
7,28
previously optimized geometries. Swizard
was used for
137, 10464–10467.
2
9
plotting the simulated spectra and GaussView was employed
for the MO plots.
1
1
1
4 N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991–1024.
5 G. R. Eaton, Pure Appl. Chem., 1988, 60, 1107–1114.
6 M. A. Albota, C. Xu and W. W. Webb, Appl. Opt., 1998, 37,
7
352–7356.
7 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13,
81–491.
Conflicts of interest
1
1
4
There are no conflicts of interest to declare.
8 M. H. V. Werts, N. Nerambourg, D. P ´e l ´e gry, Y. Le Grand and
M. Blanchard-Desce, Photochem. Photobiol. Sci., 2005, 4,
5
31–538.
Acknowledgements
1
9 C. Katan, S. Tretiak, M. H. V. Werts, A. J. Bain, R. J. Marsh,
N. Leonczek, N. Nicolaou, E. Badaeva, O. Mongin and
M. Blanchard-Desce, J. Phys. Chem. B, 2007, 111, 9468–9483.
The CNRS (PICS program No. 7106 and LIA No. 1194) and ANR
(Isogate Project) are acknowledged for financial support. O. M.
and A. T. thank the Region Bretagne for a PhD grant. M. G. H. 20 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano,
thanks the Australian Research Council (ARC) for financial
support. We acknowledge the HPC resources of CINES and of
C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori
and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115–119.
IDRIS under the allocations 2016-[x2015080649] and 2017- 21 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
[x2016080649] made by GENCI (Grand Equipement National
2008, 64, 112–122.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018