Thermochemical Capture of CO2 on Lithium Aluminates
J. Phys. Chem. A, Vol. 113, No. 25, 2009 6923
supported by the projects 23418-CONACYT-SEMARNAT,
99102-CONACYT, and IN100609-PAPIIT-UNAM. We thank
L. Ban˜os and E. Fregoso for technical help.
References and Notes
(1) Ochoa-Ferna´ndez, E.; Rønning, M.; Yu, X.; Grande, T.; Chen, D.
Ind. Eng. Chem. Res. 2008, 47, 434–442.
(2) Hwang, K. S.; Lee, Y. H.; Hwangbo, S. Mater. Sci. Poland 2007,
25, 969–975.
(3) Yi, K. B.; Eriksen, D. Ø. Sep. Sci. Technol. 2006, 41, 283–296.
(4) Nakagawa, K.; Ohashi, T. J. Electrochem. Soc. 1998, 145, 1344–
1346.
(5) Rodriguez, M. T.; Pfeiffer, H. Thermochim. Acta 2008, 473, 92–97.
(6) Pfeiffer, H.; Bosch, P. Chem. Mater. 2005, 17, 1704–1710.
(7) Togashi, N.; Okumura, T.; Oh-ishi, K. J. Ceram. Soc. Jpn. 2007,
115, 324–328.
(8) Kato, M.; Essaki, K.; Nakagawa, K.; Suyama, Y.; Terasaka, K.
J. Ceram. Soc. Jpn. 2005, 113, 684–686.
(9) Palacios-Romero, L. M.; Pfeifer, H. Chem. Lett. 2008, 37, 862–
863.
(10) Escobedo-Bretado, M.; Guzma´n-Velderrain, V.; Lardizabal-Guti-
errez, D.; Collins-Mart´ınez, V.; Lopez-Ortiz, A. Catal. Today 2005, 107-
108, 863–867.
(11) Essaki, K.; Kato, M.; Uemoto, H. J. Mater. Sci. 2005, 18, 5017–
5019.
(12) Kalinkin, A. M.; Kalinkina, E. V.; Zalkind, O. A.; Makarova, T. I.
Colloid J. 2008, 70, 33–41.
(13) Yamaguchi, T.; Niitsuma, T.; Nair, B. N.; Nakagawa, K. J. Membr.
Sci. 2007, 294, 16–21.
(14) Johnson, C. E.; Hollenberg, G. W. J. Nucl. Mater. 1981, 103, 547–
556.
Figure 8. Eyring’s plots for the rate constants of CO2 absorption (k1)
and lithium diffusion (k2).
not absorb CO2 at all, Li5AlO4 presented a high CO2 absorption.
Li5AlO4 absorbed CO2 in a wide temperature range from 200
to 700 °C, but it sintered as a function of temperature. At low
temperatures, the CO2 absorption decreased because of the
sintering effect, which implies a reduction of the surface area.
However at high temperatures, this phenomenon was not
observed because lithium diffusion was activated.
To avoid the sintering effect and to perform a kinetic analysis,
a different set of samples was homogeneously sintered before
the isothermal experiments were carried out. All of these
isotherms were fitted to exponential models, which described
two different processes: the CO2 absorption reaction and the
lithium diffusion from the core of the particles to the surface.
It could be determined that the diffusion process is the limiting
step of the whole process. Additionally, the ∆H values obtained
for the CO2 absorption and lithium diffusion processes were
15.6 and 52.1 kJ/mol, respectively. This means that lithium
diffusion is more dependent on the temperature.
Last but not least, it has to be mentioned that aluminum is a
lighter element in comparison with the other elements used as
structural ceramics for this application, for example silicates
(Li4SiO4 and Li2SiO3), cuprates (Li2CuO2), zirconates (Li2ZrO3
and Li6Zr2O7), or titanates (Li4TiO4). Therefore, because Li5AlO4
has the best theoretical CO2 chemisorption capacity per gram
of ceramic among the lithium ceramics and because of the
results obtained, Li5AlO4 may become an important case of
study as a CO2 captor.
(15) Oda, T.; Oya, Y.; Tanaka, S.; Weber, W. J. J. Nucl. Mater. 2007,
367, 263–268.
(16) Sundaram, N. T. K.; Subramania, A. Electrochim. Acta 2007, 52,
4987–4993.
(17) Li, T. K.; Ng, D. H. L. Mater. Sci. Eng., A 2007, 445-446, 652–
656.
(18) Ribeiro, R. A.; Silva, G. G.; Mohallem, N. D. S. J. Phys. Chem.
Solids 2001, 62, 857–864.
(19) Andreev, O. L.; Zelyutin, G. V.; Martemyanova, Z. S.; Batalov,
N. N. Inorg. Mater. 2001, 37, 177–179.
(20) Follstaedt, D. M.; Biefeld, R. M. Phys. ReV. B 1978, 18, 5928–
5937.
(21) La-Ginestra, A.; Lo-Jacono, M.; Porta, P. J. Therm. Anal. 1972, 4,
5–17.
(22) Stewner, F.; Hoppe, R. Z. Anorg. Allg. Chem. 1971, 380, 241–
243.
(23) Hoppe, R.; Ko¨nig, H. Z. Anorg. Allg. Chem. 1977, 430, 211–217.
(24) Pfeiffer, H.; Knowles, K. M. J. Eur. Ceram. Soc. 2004, 24, 2433–
2443.
(25) Mosqueda, H. A.; Vazquez, C.; Bosch, P.; Pfeiffer, H. Chem. Mater.
2006, 18, 2307–2310.
(26) Xiong, R.; Ida, J.; Lin, Y. S. Chem. Eng. Sci. 2003, 58, 4377–
4385.
(27) Palacios-Romero, L. M.; Lima, E.; Pfeiffer, H. J. Phys. Chem. A
2009, 113, 193–198.
(28) Alce´rreca-Corte, I.; Fregoso-Israel, E.; Pfeiffer, H. J. Phys. Chem.
C 2008, 112, 6520–6525.
Acknowledgment. This work has been performed into the
PUNTA IMPULSA-UNAM framework, and it was financially
JP902501V