(
R)-xylbinap ((R)-2,2′-bis[di(3,5-xylyl)phosphino]-1,1′-bi-
naphthyl) and (R,R)-dpen ((1R,2R)-1,2-diphenylethylenedi-
amine) ligands produce catalysts for the asymmetric H
2
-
7
hydrogenation of base-sensitive ketones. Our group has
shown that combinations of binap, aminophosphine, and
diamine ligands with the precursor RuHCl(PPh
wide variety of active catalysts for the H -hydrogenation or
transfer hydrogenation of ketones and imines and for
3 3
) lead to a
2
8
8
f
Michael addition. We show here that a diverse set of
catalysts can be created by use of phosphinite ligands based
on the binol module, one of the cheapest chiral auxiliaries
currently available. These ligands are attractive and also
widely used in rhodium, iridium, and palladium complexes
for asymmetric catalytic reactions.6a,9-12
The reaction of the complexes trans-RuHCl(phosphinite)-
8
e
(
4
diamine) 1a-4a with NaBH in benzene/alcohol produces
1
the complexes trans-RuH(η -BH
4
)(phosphinite)(diamine)
b-4b in excellent yields (up to 99%), [phosphinite ) (R)-
,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl ((R)-binop) or
1
2
(
R)-2,2′-bis[bis(3,5-dimethylphenyl)phosphinoyl]-1,1′-bi-
Figure 1. Structure of complex 3b. Only hydrogen of the hydride
and borohydride ligands are shown.
naphthyl ((R)-xylbinop); diamine ) (1R,2R)-1,2-diphenyl-
ethylenediamine ((R,R)-dpen) or (1S,2S)-1,2-diphenylethyl-
enediamine ((S,S)-dpen)] (Scheme 1).
are similar to that of trans-RuHCl((R)-xylbinop)((R,R)-
8
e
dpen) with the PPNN atoms in the equatorial plane of a
slightly distorted octahedron and with the Ru-HBH bond
Scheme 1
3
leaning toward the NN side to form BH-HN hydrogen
bonds.
The complexes 1b-4b were tested in the base-free
asymmetric transfer hydrogenation of simple ketones and
showed good activities and enantioselectivities (Table 1).
2
They are less active for the H -hydrogenation of ketones.
The ruthenium complex 3b with the (R)-xylbinop and
matching diamine ligand (R,R)-dpen gives the best results
for acetophenone (compare entries 1-5).
This complex was extensively investigated with a variety
of substrates. The electronic properties of the substituent on
the phenyl ring of the ketone changed the reduction rate but
had little effect on the enantioselectivity. A para-substituted
acetophenone with an electron-donor substituent, i.e., 4′-
methyl or 4′-methoxyl, is reduced more slowly than ac-
etophenone (entries 3, 12, and 16). The ortho-substituted
acetophenone, 2′-chloroacetophenone, is reduced slowly and
The pale yellow solid products consist of two diastereo-
mers in a ratio of 3/1 for 1b and 2/1 for 2b but only one for
b and 4b. The source of the isomerism is the placement of
the trans hydride and borohydride groups relative to the
folded backbone of the diphosphinite ligand. The isomers
interconvert readily in solution and it is assumed that both
are present during catalysis.
The crystal structures of 3b and 4b were determined by
use of X-ray diffraction (Figures 1 and 2). These structures
3
(9) (a) Jerphagnon, T.; Renaud, J.-L.; Bruneau, C. Tetrahedron: Asym-
metry 2004, 15, 2101-2111. (b) Reetz, M. T.; Mehler, G. Angew. Chem.,
Int. Ed. 2000, 39, 3889-3890. (c) Reetz, M. T.; Sell, T.; Meiswinkel, A.;
Mehler, G. Angew. Chem., Int. Ed. 2003, 42, 790-793. (d) Reetz, M. T.;
Ma, J. A.; Goddard, R. Angew. Chem., Int. Ed. 2005, 44, 412-415.
(10) (a) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch,
J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc.
2000, 122, 11539-11540. (b) Pena, D.; Minnaard, A. J.; de Vries, A. H.
M.; de Vries, J. G.; Feringa, B. L. Org. Lett. 2003, 5, 475-478.
(11) (a) Zhang, F. Y.; Kwok, W. H.; Chan, A. S. C. Tetrahedron:
Asymmetry 2001, 12, 2337-2342. (b) Guo, R.; Au-Yeung, T. T. L.; Wu,
J.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2002, 13, 2519.
(c) Guo, R.; Wu, J.; Kowk, W. H.; Chen, J.; Choi, M. C. K.; Zhou, Z. Y.
Acta Crystallogr. 2002, E58, o270. (d) Tietze, L. F.; Ila, H.; Bell, H. P.
Chem. ReV. 2004, 104, 3453-3516.
(
6) (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. ReV. 2003, 103, 3155-
3
211. (b) RajanBabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem.
Soc. 1994, 116, 4101-4102. (c) RajanBabu, T. V.; Radetich, B.; You, K.
K.; Ayers, T. A.; Casalnuovo, A. L.; Calabrese, J. C. J. Org. Chem. 1999,
6
4, 3429-3447.
7) (a) Ohkuma, T.; Koizumi, M.; Muniz, K.; Hilt, G.; Kabuto, C.;
(
Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508-6509. (b) Sandoval, C. A.;
Ohkuma, T.; Mu n˜ iz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490-
1
3503.
(8) (a) Abdur-Rashid, K.; Lough, A. J.; Morris, R. H. Organometallics
2
001, 20, 1047-1049. (b) Rautenstrauch, V.; Hoang-Cong, X.; Churlaud,
R.; Abdur-Rashid, K.; Morris, R. H. Chem. Eur. J. 2003, 9, 4954-4967.
(
2
c) Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Organometallics 2004,
3, 5524-5529. (d) Li, T.; Churlaud, R.; Lough, A. J.; Abdur-Rashid, K.;
(12) (a) Zhou, Y. G.; Tang, W. J.; Wang, W. B.; Li, W.; Zhang, X. J.
Am. Chem. Soc. 2002, 124, 4952-4953. (b) Zhou, Y. G.; Zhang, X. Chem.
Commun. 2002, 1124-1125. (c) Tang, W. J.; Zhang, X. Chem. ReV. 2003,
103, 3029-3069.
Morris, R. H. Organometallics 2004, 23, 6239-6247. (e) Guo, R.; Elpelt,
C.; Chen, X.; Song, D.; Morris, R. H. Submitted for publication. (f) Guo,
R.; Morris, R. H.; Song, D. J. Am. Chem. Soc. 2005, 126, 516-517.
1758
Org. Lett., Vol. 7, No. 9, 2005