Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) M. E. Howe and M. A. Garcia-Garibay, J. Org. Chem., 2019, 84,
9
5
570–9576; (b) L. Catalano and P. Naumov, CrystEngComm, 2018, 20,
872–5883; (c) M. Inukai, T. Fukushima, Y. Hijikata, N. Ogiwara,
S. Horike and S. Kitagawa, J. Am. Chem. Soc., 2015, 137, 12183–12186;
d) G. S. Kottas, L. I. Clarke, D. Horinek and J. Michl, Chem. Rev.,
005, 105, 1281–1376; (e) A. Comotti, S. Bracco, A. Yamamoto,
(
2
M. Beretta, T. Hirukawa, N. Tohnai, M. Miyata and P. Sozzani,
J. Am. Chem. Soc., 2014, 136, 618–621; ( f ) W. Setaka and
K. Yamaguchi, J. Am. Chem. Soc., 2012, 134, 12458.
2
3
S. Kharel, H. Joshi, N. Bhuvanesh and J. A. Gladysz, Organometallics,
2018, 37, 2991–3000.
(a) Z.-X. Zhang, T. Zhang, W.-Y. Zhang, P.-P. Shi, Q. Ye and D.-W. Fu,
Inorg. Chem., 2019, 58, 4600–4608; (b) M. Tsurunaga, Y. Inagaki,
H. Momma, E. Kwon, K. Yamaguchi, K. Yoza and W. Setaka, Org.
Lett., 2018, 20, 6934–6937; (c) S. Bracco, M. Beretta, A. Cattaneo,
A. Comotti, A. Falqui, K. Zhao, C. Rogers and P. Sozzani, Angew.
Chem., Int. Ed., 2015, 54, 4773–4777; (d) L. Kobr, K. Zhao, Y. Shen,
A. Comotti, S. Bracco, R. K. Shoemaker, P. Sozzani, N. A. Clark,
J. C. Price, C. T. Rogers and J. Michl, J. Am. Chem. Soc., 2012, 134,
1
0122–10131.
4
(a) J. Dong, X. Li, S. B. Peh, Y. D. Yuan, Y. Wang, D. Ji, S. Peng,
G. Liu, S. Ying, D. Yuan, J. Jiang, S. Ramakrishna and D. Zhao, Chem.
Mater., 2019, 31, 146–160; (b) J. Dong, A. K. Tummanapelli, X. Li,
S. Ying, H. Hirao and D. Zhao, Chem. Mater., 2016, 28, 7889–7897;
Chart 1 A condensed view of the observed solid forms of 2 and their
solid-to-solid transformations and the associated internal behaviours.
(
c) M. Cipolloni, J. Kaleta, M. Ma ˇs ´a t, P. I. Dron, Y. Shen, K. Zhao,
C. T. Rogers, R. K. Shoemaker and J. Michl, J. Phys. Chem. C, 2015,
119, 8805–8820.
Z. J. O’Brien, S. D. Karlen, S. Khan and M. A. Garcia-Garibay, J. Org.
Chem., 2010, 75, 2482–2491.
A. Comotti, S. Bracco and P. Sozzani, Acc. Chem. Res., 2016, 49,
1701–1710.
M. K. Dudek, S. Kazmierski, M. Kostrzewa and M. J. Potrzebowski,
Chapter One - Solid-State NMR Studies of Molecular Crystals, Annu.
Rep. NMR Spectrosc., 2018, 15, 1–81.
Interestingly, the low pre-exponential factor in batch A reveals a
geometrically congested transition state, implying that the motion in
5
6
7
2
depends on the collective bending of the molecule during the
phenylene angular displacements. DFT computation (Fig. S25, ESI†)
À1
indicate that the rotor requires 6 kcal mol to rotate in the gas
phase, so the amorphous nature of the ground solid enables the
motion by providing a very fluid environment.
In summary, exchanging a central phenylene for a xylene
ring increases the solubility of the compound and gives rise to
several solid forms that were characterized by X-ray diffraction
8 Y. A. Abramov, M. Zell and J. F. Krzyzaniak, Toward a rational solvent
selection for conformational polymorph screening. Chemical engineer-
ing in the pharmaceutical industry: active pharmaceutical Ingredients,
2nd edn, John Wiley & Sons, Inc., 2019.
(
Chart 1). The methyl groups also inhibited the rotation of the
9 W. Bernal, O. Barbosa-Garc ´ı a, A. Aguilar-Granda, E. P ´e rez-Guti ´e rrez,
J.-L. Maldonado, M. J. Percino and B. Rodr ´ı guez-Molina, Dyes Pigm.,
13
central ring, as corroborated by VT C NMR CPMAS. Interestingly,
the phenylene rings attached to carbazole showed motion after
grinding the crystals, a process that produces an heterogenous
solid (amorphous/crystalline) with an isotropic H NMR signal in
the solid-state. The motion in the solid occurs only in the amor-
phous component, and in a sample with 17% crystalline compo-
nent, a low activation barrier to rotation (E
observed, requiring a bent structure with a low pre-exponential
2
019, 163, 754–760.
1
0 (a) A. Aguilar-Granda, S. Perez-Estrada, A. E. Roa, J. Rodr ´ı guez-
Hern ´a ndez, S. Hern ´a ndez-Ortega, M. Rodriguez and B. Rodr ´ı guez-
Molina, Cryst. Growth Des., 2016, 16, 3435–3442; (b) A. Aguilar-
Granda, S. Perez-Estrada, E. Sanchez-Gonz ´a lez, J. R. A´ lvarez,
2
J. Rodr ´ı guez-Hern ´a ndez, M. Rodr ´ı guez, A. E. Roa, S. Hern ´a ndez-
Ortega, I. A. Ibarra and B. Rodr ´ı guez-Molina, J. Am. Chem. Soc., 2017,
139, 7549–7557.
1 M. M. Haley, Modern Alkene Chemistry. Catalytic and Atom-
Economic Transformations, Angew. Chem., Int. Ed., 2015, 54, 8332.
À1
a
= 7.38 kcal mol ) was
1
10
À1
factor (A = 6.22 Â 10
s
).
12 Preliminary unit cell parameters: (a) 32.44(4) Å, (b) 5.75(3) Å,
c) 21.65(3) Å, (a) 901, (b) 110.741(3), (g) 901.
(
We are grateful for the financial support from PAPIIT IN209119
and CONACYT for the PhD scholarship 576483 (A. C.-M.). We
1
3 M. J. Duer, Introduction to Solid-State NMR Spectroscopy, Blackwell,
Oxford, UK, 2004.
acknowledge the UCLA Department of Chemistry and Biochemistry 14 T. R. Molugu, S. Lee and M. F. Brown, Chem. Rev., 2017, 117,
2
12087–12132.
for solid state H NMR experiments (NSF DMR-1700471 and MRI-
532232). We are grateful for the technical assistance from Dr Diego
Mart ´ı nez-Otero (X-ray), Dr Mar ´ı a del Carmen Garc ´ı a Gonzalez, Mar ´ı a
1
5 Three different batches of rotor 2 were ground and a mixture of
crystalline/amorphous components was always present: batch A
(17%/83%), batch B (24%/76%) and batch C (42%/58%), see also
1
2
´
˜
´
ESI† for their corresponding VT H spectra.
de los Angeles Pena Gonzalez, and MSc Elizabeth Huerta Salazar
MS and NMR). We thank Prof. Salvador P ´e rez-Estrada for initial
solid-state NMR measurements.
1
6 A. Colin-Molina, M. J. Jellen, E. Garc ´ı a-Quezada, M. E. Cifuentes-Quintal,
F. Murillo, J. Barroso, S. Perez-Estrada, R. A. Toscano, G. Merino and
B. Rodr ´ı guez-Molina, Chem. Sci., 2019, 10, 4422–4429.
(
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14054--14057 | 14057