Paper
Journal of Materials Chemistry A
effectively connes the expansion of the ZnO nanosheets and
maintains their structural continuity without fracture. However,
for the CZ800C nanosheet anode, the electrode exhibits
a subversive deformation of surface morphology (Fig. 5g and h).
The nanosheets suffer from pulverization due to cracking of the
carbon layer and no apparent nanosheets are observed (Fig. 5h).
The thickness change reaches 91% (Fig. 5i and j). The
comparison of the electrode thickness before and aer
discharge/charge cycles in Fig. 5i and j implies that, for
a thickness ratio of the ZnO layer to the carbon layer below the
critical value (ꢁ1 : 1), the carbon coating layer in composite
nanosheets can sufficiently suppress electrode volume expan-
sion and retain structural integrity aer long-term cycling,
thereby improving the battery performance compared to the
4 J. Mei, T. Liao, L. Z. Kou and Z. Q. Sun, Adv. Mater., 2017, 29,
1700176.
5 W. P. Si, I. M ¨o nch, C. L. Yan, J. W. Deng, S. L. Li, G. G. Lin,
L. Y. Han, Y. F. Mei and O. G. Schmidt, Adv. Mater., 2014, 26,
7973–7978.
6 S. L. Zhang, K. J. Zhao, T. Zhu and J. Li, Prog. Mater. Sci.,
2017, 89, 491–521.
7 N. Liu, Z. D. Lu, J. Zhao, M. T. Mecdowell, H. W. Lee,
W. T. Zhao and Y. Cui, Nat. Nanotechnol., 2014, 9, 187–192.
8 A. Kushima, X. H. Liu, G. Zhu, Z. L. Wang, J. Y. Huang and
J. Li, Nano Lett., 2011, 11, 4535–4541.
9 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell,
S. W. Lee, A. Jackson, Y. Yang, L. B. Hu and Y. Cui, Nat.
Nanotechnol., 2012, 7, 310–315.
anode with a thicker ZnO layer (e.g., CZ800C nanosheet anode). 10 D. N. Wang, J. L. Yang, X. F. Li, D. S. Geng, R. Y. Li, M. Cai,
T. Sham and X. L. Sun, Energy Environ. Sci., 2013, 6, 2900–
2
906.
Conclusion
1
1 J. B. Wang, Z. W. Liu, W. J. Yang, L. J. Han and M. D. Wei,
Chem. Commun., 2018, 54, 7346–7349.
2 Q. S. Xie, P. F. Liu, D. Q. Zeng, W. J. Xu, L. S. Wang, Z. Z. Zhu,
L. M. Mai and D. L. Peng, Adv. Funct. Mater., 2018, 28,
Herein, we have designed a sandwiched CZC nanosheet anode
with a stable SEI for fast and stable lithium storage. By this
means, both CZC and CTC nanosheets (Fig. S12†) were fabri-
cated. The oxide layer with controllable thickness is conned
between two porous carbon layers with a thickness larger than
1
1
707433.
1
1
3 W. F. Zhang, T. Xu, Z. W. Liu, N. L. Wu and M. D. Wei, Chem.
Commun., 2018, 54, 1413–1416.
4 W. X. Song, R. Brugge, I. G. Theodorou, A. L. Lim, Y. C. Yang,
T. T. Zhao, C. H. Burgess, I. D. Johnson, A. Aguadero,
P. R. Shearing, D. J. L. Brett, F. Xie and D. J. Riley, ACS
Appl. Mater. Interfaces, 2017, 9, 37823–37831.
30 nm. In addition to providing an electric contact network
around oxides, the thick carbon coating layer helps to suppress
the volume change because of its mechanical robustness and
+
facilitates Li transport into the inner ZnO layer due to its
porous feature. When used as anodes for lithium storage, the
composite nanosheets enable a fast, high and stable capacity. A
critical thickness ratio of the ZnO layer to the carbon layer is
proposed. If the ZnO layer is thicker, the carbon layer is prone to
fracture. This nding provides a guideline for designing sand-
wiched carbon/oxide/carbon nanostructures for their applica-
tion in high energy and stable lithium storage.
1
1
1
1
1
2
5 C. Zheng, M. Y. Liu, W. Q. Chen, L. X. Zeng and M. D. Wei, J.
Mater. Chem. A, 2016, 4, 13646–13651.
6 J. Qin, N. Q. Zhao, G. S. Shi, E. Z. Liu, F. He, L. Y. Ma, Q. Y. Li,
J. I. Li and C. N. He, J. Mater. Chem. A, 2017, 5, 10946–10956.
7 Y. Zhao, L. P. Wang, S. B. Xi, Y. H. Du, Q. Q. Yao, L. H. Guan
and Z. J. Xu, J. Mater. Chem. A, 2017, 5, 25609–25617.
8 J. Liu, M. Z. Gu, L. Z. Ouyang, H. Wang, L. C. Yang and
M. Zhu, ACS Appl. Mater. Interfaces, 2016, 8, 8502–8510.
9 W. Q. Yao, J. Chen, L. Zhan, Y. L. Wang and S. B. Yang, ACS
Appl. Mater. Interfaces, 2017, 9, 39371–39379.
Conflicts of interest
There are no conicts to declare.
0 Y. Z. Su, S. Li, D. Q. Wu, F. Zhang, H. W. Liang, P. F. Gao,
C. Cheng and X. L. Feng, ACS Nano, 2012, 6, 8349–8356.
Acknowledgements
21 W. Q. Li, K. Cao, H. T. Wang, J. B. Liu, L. M. Zhou and
H. M. Yao, Nanoscale, 2016, 8, 5254–5259.
This work is supported by the National Key R&D Program of
China (No. 2017YFE0112000), the National Natural Science
Foundation of China (No. 61628401 and U1632115), the Science
and Technology Commission of Shanghai Municipality (No.
2
2 Q. Q. Li, W. Q. Li, Q. Feng, P. Wang, M. M. Mao, J. B. Liu,
L. M. Zhou, H. T. Wang and H. M. Yao, Carbon, 2014, 80,
793–798.
2
2
2
2
3 B. Luo, B. Wang, X. L. Li, Y. Y. Jia, M. H. Liang and L. J. Zhi,
Adv. Mater., 2012, 24, 3538–3543.
4 W. Q. Li, Q. Wang, K. Cao, J. J. Tang, H. T. Wang, L. M. Zhou
and H. M. Yao, Compos. Commun., 2016, 1, 1–5.
17JC1401700), and the Changjiang Young Scholars Program of
China. Part of the work is also supported by the National Key
Technologies R&D Program of China (No. 2015ZX02102-003).
5 J. Y. Cheong, J. H. Chang and C. Kim, Electrochim. Acta, 2017,
258, 1140–1148.
Notes and references
6 L. L. Peng, Z. W. Fang, Y. Zhu, C. S. Yan and G. H. Yu, Adv.
Energy Mater., 2018, 8, 1702179.
1
2
3
S. H. Yu, S. H. Lee, D. J. Lee, Y. E. Sung and T. Hyeon, Small,
016, 12, 2146–2172.
M. V. Reddy, G. V. S. Rao and B. V. R. Chowdari, Chem. Rev.,
013, 113, 5364–5457.
J. H. Liu and X. W. Liu, Adv. Mater., 2012, 24, 4097–4111.
2
27 L. L. Peng, P. Xiong, L. Ma, Y. F. Yuan, Y. Zhu, D. H. Chen,
X. Y. Luo, J. Lu, K. Amine and G. H. Yu, Nat. Commun.,
2017, 8, 15139.
2
This journal is © The Royal Society of Chemistry 2018
J. Mater. Chem. A, 2018, 6, 22870–22878 | 22877