Angewandte Chemie International Edition
10.1002/anie.201712668
COMMUNICATION
reaction. By leveraging the variable ureate framework excellent Acknowledgements
activity with either terminal or challenging internal alkenes has
been realized. This approach is operationally simple in that no
amine protecting groups, directing groups or additives are
required and products can be isolated by filtration. Furthermore,
this new family of easily prepared catalysts is the only class that
uses a 1:1 combination of alkene and amine substrates. These
new systems address acknowledged problems in catalyst activity.
On-going work focuses on mechanistic investigations to
understand and optimize ligand substituent effects. Future work
aims to enhance substrate scope and selectively modify regio-
and stereoselectivity in hydroaminoalkylation.
RCD and SCR thank NSERC CREATE Sustainable Synthesis
and RCD thanks UBC for a graduate fellowship. LLS thanks
NSERC for financial support of this work. This research was
undertaken, in part, thanks to funding from the Canada Research
Chairs program.
Keywords: amines • C-H activation • hydroaminoalkylation •
tantalum alkyls • ureates
[
1]
2]
Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117,
333-9403.
[8]
For Ta and Nb catalysts see: a) S. B. Herzon, J. F. Hartwig, J. Am. Chem.
Soc. 2007, 129, 6690-6691. b) S. B. Herzon, J. F. Hartwig, J. Am. Chem.
Soc. 2008, 130, 14940-14941. c) P. Eisenberger, R. O. Ayinla, J. M. P.
Lauzon, L. L. Schafer, Angew. Chem. Int. Ed. 2009, 48, 8361-8365. d)
G. Zi, F. Zhang, H. Song, Chem. Comm. 2010, 46, 6296-6298. e) A. L.
Reznichenko, T. J. Emge, S. Audörsch, E. G. Klauber, K. C. Hultzsch, B.
Schmidt, Organometallics 2011, 30, 921-924. f) F. Zhang, H. Song, G.
Zi, Dalton Trans. 2011, 40, 1547-1566. g) A. L. Reznichenko, K. C.
Hultzsch, J. Am. Chem. Soc. 2012, 134, 3300-3311. h) P. Garcia, Y. Y.
Lau, M. R. Perry, L. L. Schafer, Angew. Chem. Int. Ed. 2013, 52, 9144-
9148. i) P. Garcia, P. R. Payne, E. Chong, R. L. Webster, B. J. Barron,
A. C. Behrle, J. A. R. Schmidt, L. L. Schafer, Tetrahedron 2013, 69, 5737-
5743. j) P. R. Payne, P. Garcia, P. Eisenberger, J. C. H. Yim, L. L.
Schafer, Org. Lett. 2013, 15, 2182-2185. k) Z. Zhang, J.-D. Hamel, L. L.
Schafer, Chem. Eur. J. 2013, 19, 8751-8754. l) E. Chong, J. W. Brandt,
L. L. Schafer, J. Am. Chem. Soc. 2014, 136, 10898-10901. m) J. Dörfler,
S. Doye, Eur. J. Org. Chem. 2014, 2014, 2790-2797. n) B. Hamzaoui, J.
D. A. Pelletier, E. Abou-Hamad, Y. Chen, M. El Eter, E. Chermak, L.
Cavallo, J.-M. Basset, Chem. Eur. J. 2016, 22, 3000-3008. o) J. M.
Lauzon, P. Eisenberger, S.-C. Roşca, L. L. Schafer, ACS Catalysis 2017,
7, 5921-5931. p) J. W. Brandt, E. Chong, L. L. Schafer, ACS Catalysis
2017, 7, 6323-6330. q) P. M. Edwards, L. L. Schafer, Org. Lett. 2017, 19,
5720-5723.
9
[
For reviews and highlights describing hydroaminoalkylation reactions
see: a) P. W. Roesky, Angew. Chem. Int. Ed. 2009, 48, 4892-4894. b) P.
Eisenberger, L. L. Schafer, Pure Appl. Chem. 2010, 82, 1503-1515. c) E.
Chong, P. Garcia, L. L. Schafer, Synthesis 2014, 46, 2884-2896. d) S. A.
Ryken, L. L. Schafer, Acc. Chem. Res. 2015, 48, 2576-2586. e) J. D. A.
Pelletier, J.-M. Basset, Acc. Chem. Res. 2016, 49, 664-677. f) F. Perez,
S. Oda, L. M. Geary, M. J. Krische, Top. Curr. Chem. 2016, 374, 35.
a) S. Oda, J. Franke, M. J. Krische, Chem. Sci. 2016, 7, 136-141. b) A.
T. Tran, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 10530-10534. c) D.
Yamauchi, T. Nishimura, H. Yorimitsu, Angew. Chem. Int. Ed. 2017, 56,
[
3]
4]
7200-7204. d) S. M. Thullen, T. Rovis, J. Am. Chem. Soc. 2017, 139,
15504-15508.
[
a) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed.
2009, 48, 5094-5115. b) L. Ackermann, Chem. Comm. 2010, 46, 4866-
4877. c) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169.
d) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res.
012, 45, 814-825. e) C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C.
2
MacMillan, Nature 2017, 547, 79-83.
[
5]
6]
a) A. E. Nako, J. Oyamada, M. Nishiura, Z. Hou, Chem. Sci. 2016, 7,
6
429-6434. b) F. Liu, G. Luo, Z. Hou, Y. Luo, Organometallics 2017, 36,
557-1565. c) H. Gao, J. Su, P. Xu, X. Xu, Org. Chem. Front. 2018 in
1
press DOI: 10.1039/C7QO00718C.
[9]
a) M. G. Clerici, F. Maspero, Synthesis 1980, 1980, 305-306. b) W. A.
Nugent, D. W. Ovenall, S. J. Holmes, Organometallics 1983, 2, 161-162.
[
For Ti catalysts see: a) C. Müller, W. Saak, S. Doye, Eur. J. Org. Chem.
2
008, 2008, 2731-2739. b) Kubiak, I. Prochnow, S. Doye, Angew. Chem.
[10] a) D. C. Leitch, P. R. Payne, C. R. Dunbar, L. L. Schafer, J. Am. Chem.
Soc. 2009, 131, 18246-18247. b) D. C. Leitch, C. S. Turner, L. L. Schafer,
Angew. Chem. Int. Ed. 2010, 49, 6382-6386. c) D. C. Leitch, R. H. Platel,
L. L. Schafer, J. Am. Chem. Soc. 2011, 133, 15453-15463. d) P. R.
Payne, J. A. Bexrud, D. C. Leitch, L. L. Schafer, Can. J. Chem. 2011, 89,
1222-1229. e) Lauzon, J. M. P.; Schafer, L. L. Z. Anorg. Allg. Chem. 2015,
641, 128-135.
Int. Ed. 2009, 48, 1153-1156. c) I. Prochnow, R. Kubiak, O. N. Frey, R.
Beckhaus, S. Doye, ChemCatChem 2009, 1, 162-172. d) R. Kubiak, I.
Prochnow, S. Doye, Angew. Chem. Int. Ed. 2010, 49, 2626-2629. e) I.
Prochnow, P. Zark, T. Müller, S. Doye, Angew. Chem. Int. Ed. 2011, 50,
6
401-6405. f) D. Jaspers, W. Saak, S. Doye, Synlett 2012, 23, 2098-
102. g) E. Chong, L. L. Schafer, Org. Lett. 2013, 15, 6002-6005. h) J.
2
Dörfler, S. Doye, Angew. Chem. Int. Ed. 2013, 52, 1806-1809. i) T.
Preuß, W. Saak, S. Doye, Chem. Eur. J. 2013, 19, 3833-3837. j) J.
Dörfler, T. Preuß, A. Schischko, M. Schmidtmann, S. Doye, Angew.
Chem. Int. Ed. 2014, 53, 7918-7922. k) J. Dörfler, B. Bytyqi, S. Hüller, N.
M. Mann, C. Brahms, M. Schmidtmann, S. Doye, Adv. Synth. Catal.
[11] R. H. Platel, L. L. Schafer, Chem. Comm. 2012, 48, 10609-10611.
[12] S. Moorhouse, G. Wilkinson, J. Chem. Soc., Dalton Trans. 1974, 2187-
2190.
[13] R. R. Schrock, J. D. Fellmann, J. Am. Chem. Soc. 1978, 100, 3359-3370.
[14] M. H. Chisholm, J. C. Huffman, L.-S. Tan, Inorg. Chem. 1981, 20, 1859-
1866.
2015, 357, 2265-2276. l) J. Dorfler, Preu, C. Brahms, D. Scheuer, S.
Doye, Dalton Trans. 2015, 44, 12149-12168. m) L. H. Lühning, C.
Brahms, J. P. Nimoth, M. Schmidtmann, S. Doye, Z. Anorg. Allg. Chem.
[15] In situ reactions were monitored by 1H NMR via the disappearance of
CH2 peaks from the starting material. Please refer to figures S5 and S6
in the Supporting Information.
2
015, 641, 2071-2082. n) M. Manßen, N. Lauterbach, J. Dörfler, M.
Schmidtmann, W. Saak, S. Doye, R. Beckhaus, Angew. Chem. Int. Ed.
015, 54, 4383-4387. o) M. Weers, L. H. Lühning, V. Lührs, C. Brahms,
[16] J. M. Clarkson, L. L. Schafer, Inorg. Chem. 2017, 56, 5553-5566.
[17] Please refer to Figures S7 and S8 in the Supporting Information.
[18] S. Kobayashi, H. Ishitani, M. Ueno, J. Am. Chem. Soc. 1998, 120, 431-
432.
2
S. Doye, Chem. Eur. J. 2017, 23, 1237-1240. p) J. Bielefeld, S. Doye,
Angew. Chem. Int. Ed. 2017, 56, 15155-15158.
[7]
For Zr catalysts see: a) J. A. Bexrud, P. Eisenberger, D. C. Leitch, P. R.
Payne, L. L. Schafer, J. Am. Chem. Soc. 2009, 131, 2116-2118. b) B.
Hamzaoui, J. D. A. Pelletier, M. El Eter, Y. Chen, E. Abou-Hamad, J.-M.
Basset, Adv. Synth. Catal. 2015, 357, 3148-3154.
[19] For a comparison of L4 and L5 among a variety of substrates, refer to
Table S1 in the Supporting Information.
This article is protected by copyright. All rights reserved.