Communication
ChemComm
3 Y. H. Jin, C. Yu, R. J. Denman and W. Zhang, Chem. Soc. Rev., 2013,
42, 6634–6654.
4 M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012, 41,
2003–2024.
5 C. S. Diercks and O. M. Yaghi, Science, 2017, 355, eaal1585.
6 J. L. Segura, M. J. Mancheno and F. Zamora, Chem. Soc. Rev., 2016,
45, 5635–5671.
7 T. Hasell and A. I. Cooper, Nat. Rev. Mater., 2016, 1, 1–14.
8 F. Beuerle and B. Gole, Angew. Chem., Int. Ed., 2018, 57, 4850–4878.
9 S. Lee, A. Yang, T. P. Moneypenny and J. S. Moore, J. Am. Chem. Soc.,
2016, 138, 2182–2185.
10 S. D. P. Fielden, D. A. Leigh and S. L. Woltering, Angew. Chem., Int.
Ed., 2017, 56, 11166–11194.
11 J. J. Danon, A. Kruger, D. A. Leigh, J. F. Lemonnier, A. J. Stephens,
I. J. Vitorica-Yrezabal and S. L. Woltering, Science, 2017, 355,
159–162.
We report the acid assisted de-tert-butylation reaction of
HUBs, which enables effective removal of the tert-butyl group
from the hindered urea, thus ‘‘turning off’’ the dynamicity of
the HUB and rendering the urea bond stable. We demonstrated
the feasibility of the reaction with different hindered urea
compounds in different solvents. The de-tert-butylation reac-
tion is dependent on acid concentration and high acidity is
required for effective and exclusive de-tert-butylation. What’s
more, excessive acid would not cause degradation of the urea
linkage. We also tested the de-tert-butylation reaction of HUB in
polymers and organogels, both displaying complete removal
of the tert-butyl group and increased material stability. The
de-tert-butylation reaction was also demonstrated to increase 12 W. Zou, J. Dong, Y. Luo, Q. Zhao and T. Xie, Adv. Mater., 2017,
29, 1606100.
the mechanical property of materials bearing HUBs. These
results indicate that this de-tert-butylation reaction can be
13 R. J. Wojtecki, M. A. Meador and S. J. Rowan, Nat. Mater., 2011, 10,
14–27.
effectively used in combination with the dynamic covalent 14 Z. Wei, J. H. Yang, J. X. Zhou, F. Xu, M. Zrinyi, P. H. Dussault,
Y. Osada and Y. M. Chen, Chem. Soc. Rev., 2014, 43, 8114–8131.
15 T. Xie, Nature, 2010, 464, 267–270.
16 P. Chakma and D. Konkolewicz, Angew. Chem., Int. Ed., 2019, 58,
chemistry, acting as a stabilizing or curing step. From the
materials perspective, it provides a new way to construct regular
polyurea materials through synthesizing hindered polyurea
with isocyanate and hindered amine precursors, which is much
easier to control, and processing the formed hindered polyurea
to the desired stable forms following the removal of the
hindered substituents. With this new strategy, polyurea pro-
cesses that are difficult to achieve with conventional methods
are readily attainable, and many new applications of polyurea
could be possible. The de-tert-butylation chemistry also resembles
the widely used deprotection chemistry of tert-butoxycarbonyl and
tert-butyl ester and may have potential in organic synthesis, such
as the synthesis of macrocycles.31 Thus, this de-tert-butylation
chemistry is a great tool to manipulate the stability of dynamic
materials and enable the synthesis of functional molecules and
materials.
9682–9695.
17 D. Roy, J. N. Cambre and B. S. Sumerlin, Prog. Polym. Sci., 2010, 35,
278–301.
18 E. Moulin, G. Cormos and N. Giuseppone, Chem. Soc. Rev., 2012, 41,
1031–1049.
19 Y. Jin, Q. Wang, P. Taynton and W. Zhang, Acc. Chem. Res., 2014, 47,
1575–1586.
20 D. K. Chattopadhyay and K. V. S. N. Raju, Prog. Polym. Sci., 2007, 32,
352–418.
21 H. Ying, Y. Zhang and J. Cheng, Nat. Commun., 2014, 5, 1–9.
22 H. Z. Ying, J. Yen, R. B. Wang, Y. Lai, J. L. A. Hsu, Y. H. Hu and
J. J. Cheng, Biomater. Sci., 2017, 5, 2398–2402.
23 Y. Zhang, H. Ying, K. R. Hart, Y. Wu, A. J. Hsu, A. M. Coppola,
T. A. Kim, K. Yang, N. R. Sottos, S. R. White and J. Cheng,
Adv. Mater., 2016, 28, 7646–7651.
24 Y. C. Jia, H. Z. Ying, Y. F. Zhang, H. He and J. J. Cheng, Macromol.
Chem. Phys., 2019, 220, 1900148.
25 H. Z. Ying and J. J. Cheng, J. Am. Chem. Soc., 2014, 136,
16974–16977.
This work was supported by the United States National Science
Foundation (NSF CHE 17-09820) and American Chemical Society
Petroleum Research Fund (58671-ND7).
26 S. J. Wang, Y. F. Yang, H. Z. Ying, X. L. Jing, B. Wang, Y. F. Zhang
and J. J. Cheng, ACS Appl. Mater. Interfaces, 2020, 12, 35403–35414.
27 L. F. Chen, L. H. Zhang, P. J. Griffin and S. J. Rowan, Macromol.
Chem. Phys., 2020, 221, 1900440.
28 S. Zechel, R. Geitner, M. Abend, M. Siegmann, M. Enke, N. Kuhl,
M. Klein, J. Vitz, S. Grafe, B. Dietzek, M. Schmitt, J. Popp,
U. S. Schubert and M. D. Hager, NPG Asia Mater., 2017, 9, e420.
29 G. Y. Kim, S. Sung, M. P. Kim, S. C. Kim, S. H. Lee, Y. I. Park,
S. M. Noh, I. W. Cheong and J. C. Kim, Appl. Surf. Sci., 2020,
505, 144546.
Conflicts of interest
There are no conflicts to declare.
30 K. M. Cai, H. Z. Ying and J. J. Cheng, Chem. – Eur. J., 2018, 24,
7345–7348.
31 Y. Yang, H. Ying, Z. Li, J. Wang, Y. Chen, B. Luo, D. L. Gray,
A. Ferguson, Q. Chen, Y. Z and J. Cheng, Nat. Commun, 2021,
12, 1572, DOI: 10.1038/s41467-021-21678-3.
Notes and references
1 J. M. Lehn, Chem. Soc. Rev., 2007, 36, 151–160.
2 S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and
J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898–952.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 3812–3815
| 3815