The most accepted mechanism5,8 for the cycloaddition of
azomethine ylides is shown in Scheme 1. Coordination of
In our initial investigation, we found AgOAc/1a system
can efficiently catalyze the cycloaddition of 4 with dimethyl
maleate in toluene with high activity and moderate enantio-
selectivity in the absence of base (entry 1, Table 1); only
Scheme 1. Mechanism of AgOAc-Catalyzed 1,3-Dipolar
Cycloaddition
Table 1. AgOAc-Catalyzed Asymmetric Cycloaddition of 4a
b
c
entry
ligand
solvent
T (°C)
yield (%)
ee (%)
the iminoester to chiral Ag(I) or Cu(II) catalyst, followed
by deprotonation with base to form the reactive metal-bound
azomethine ylide dipole, which reacts with dipolarophiles,
was followed by elimination of cycloadduct to regenerate
the chiral catalyst. Thus, for the above catalytic systems, an
excess of base such as tertiary amine was involved. By
analyzing the above mechanism carefully, we think that extra
base is not necessary for AgOAc-catalyzed cycloaddition of
azomethine ylide because the AgOAc bearing a moderately
1
2
3
4
5
6
7
8
9
10
11
12
3
4
5
1a
1b
1c
1d
1d
1d
1d
1e
2
3a
3b
3c
3d
3d
3d
toluene
toluene
toluene
toluene
THF
DME
Et2O
Et2O
0
0
0
0
0
0
0
0
0
0
0
0
0
89
86
88
98
86
96
93
98
96
91
88
89
94
88
98
68
53
69
81
86
78
88
81
-78
84
89
83
94
98
98
Et O
2
Et2O
basic charged ligand acetate would facilitate deprotonation
of iminoesters to generate the azomethine ylide.10 Intrigued
Et2O
Et2O
Et2O
Et2O
Et2O
1
1
1
by the effectiveness of ferrocene-derived chiral N,P ligands
in asymmetric reactions,11 we developed highly enantiose-
lective AgOAc-catalyzed asymmetric [3 + 2] cycloaddition
of azomethine ylides using ferrocenyloxazoline-derived chiral
N,P ligands without extra base.
-25
-40
a
Conditions: iminoester 4 (1.0 equiv), dimethyl maleate (1.5 equiv),
b
AgOAc (3 mol %), ligand (3.3 mol %), concentration (0.15 M). Isolated
yields based on 4. c Determined by HPLC.
(
8) Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.;
Komatsu, M. Org. Lett. 2003, 5, 5043-5046.
9) During preparation of this manuscript, Zhang reported a Cu(I)/P,
1
(
the endo isomer 5 was detected by H NMR analysis of
reaction mixtures.
N-ligand-catalyzed asymmetric 1,3-polar cycloaddition of azomethine ylides
with high exo selectivity; see: (a) Gao, W.; Zhang, X.; Raghunath, M. Org.
Lett. 2005, 7, 4241-4244. (b) Pfaltz reported a base-free AgOAc/PHOX-
catalyzed intramolecular [3 + 2] cycloaddition of azomethine ylides; see:
Stohler, R.; Wahl, F.; Pfaltz, A. Synthesis 2005, 1431-1436.
Encouraged by these results, the effect of substituent of
oxazoline ring on the conversion and enantioselectivity was
investigated in toluene (Table 1). The results showed that
Bn-substituted ligand 1d (entry 4) is superior to 1a (R )
i-Pr), 1b (R ) t-Bu) and 1c (R ) Ph). The solvent effect
was also studied (entries 4-7), the reaction proceeded well
(10) For a recent example using this strategy in the Henry reaction, see:
Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey,
C. W. J. Am. Chem. Soc. 2003, 125, 12692-12693.
(11) For recent examples, see: (a) Lu, S. M.; Han, X. W.; Zhou, Y. G.
AdV. Synth. Catal. 2004, 346, 909-912. (b) Dai, L. X.; Tu, T.; You, S. L.;
Deng, W. P.; Hou, X. L. Acc. Chem. Res. 2003, 36, 659-667. (c) You,
S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. J. Org. Chem. 2002, 67,
in Et
2
O, THF and DME, and low activity was observed in
. The highest enantioselectivity was obtained in ether.
CH Cl
2
2
4
684-4695. (d) Deng, W. P.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W.
J. Am. Chem. Soc. 2001, 123, 6508-6519. (e) Bolm, C.; Mu n˜ iz, K. Chem.
Eur. J. 2000, 2309-2316. (f) Deng, W. P.; Hou, X. L.; Dai, L. X.; Dong,
X. W. Chem. Commun. 2000, 285-286. (g) Deng, W. P.; Hou, X. L.; Dai,
L. X.; Yu, Y. H.; Xia, W. Chem. Commun. 2000, 1483-1484. (h) Shintani,
R.; Lo, M. M. C.; Fu, G. C. Org. Lett. 2000, 2, 3695-3697. (i) Bolm, C.;
Mu n˜ iz-Fern a´ ndez, K.; Hildebrand, J. P. Org. Lett. 1999, 1, 491-494. (j)
Donde, Y.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 2933-2934. (k)
Zhang, W.; Shimanuki, T.; Kida, T.; Nakatusuji, Y.; Ikeda, I. J. Org. Chem.
To investigate the effect of planar chirality on the
enantioselectivity and absolute configuration of the prod-
11
ucts, (S
ee was observed (81% ee, entry 8). (S,R
central chirality and opposite planar chirality to (S,S
P
)-1e with only planar chirality was used, and lower
)-2 with the same
)-1d
P
P
was also used in the cycloaddition of 4 with dimethyl
maleate. Under the same conditions, lower enantioselectivity
and the opposite absolute configuration were observed
1999, 64, 6247-6251. (l) Bolm, C.; Mu n˜ iz-Fern a´ ndez, K.; Seger, A.; Raabe,
G.; G u¨ nther, K. J. Org. Chem. 1998, 63, 7860-7867. (m) You, S. L.; Zhou,
Y. G.; Hou, X. L.; Dai, L. X. Chem. Commun. 1998, 2765-2766. (n) Togni,
A.; Pastor, S. D. J. Org. Chem. 1990, 55, 1649-1664. (o) Hayashi, T.;
Konoshi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tajika, M.; Kumada,
M. J. Am. Chem. Soc. 1982, 104, 180-186.
P
(-78% ee, entry 9). The lower ee with (S,R )-2 suggests
the mismatched nature of the (R) planar chirality with the
5056
Org. Lett., Vol. 7, No. 22, 2005