Journal of the American Chemical Society
Page 4 of 6
for the direct oxidation of ethane by oxygen under mild conditions,
and offers new insights to design efficient catalysts for low
temperature alkane activation in the future.
Oxygen. J. Catal., 2007, 247, 245-255. (d) Gaertner, C. A.; Veen, A. C.
V.; Lercher, J. A. Oxidative Dehydrogenation of Ethane: Common
Principles and Mechanistic Aspects. ChemCatChem, 2013, 5, 3196-3217.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(e) Li, X.; Iglesia, E. Support and Promoter Effects in the Selective
Oxidation of Ethane to Acetic Acid Catalyzed by Mo-V-Nb Oxides. Appl.
Catal. A: Gen. 2008, 334, 339-347.
ASSOCIATED CONTENT
Supporting Information
(4) (a) Lin, M.; Sen, A. A Highly Catalytic System for the Direct
Oxidation of Lower Alkanes by Dioxygen in Aqueous Medium. A Formal
Heterogeneous Analog of Alkane Monooxygenases. J. Am. Chem. Soc.,
1992, 114, 7307-7308. (b) Shul’pin, G. B.; Sooknoi, T.; Romakh, V. B.;
Süss-Fink, G.; Shul’pina, L. S. Regioselective Alkane Oxygenation with
The Supporting Information is available free of charge on the
ACS Publications website.
H
(
2
O
2
Catalyzed by Titanosilicalite TS-1. Tetra. Lett., 2006, 47, 3071-3075.
c) Shul’pina, L.S.; Kirillova, M.V.; Pombeiro, A.J.L.; Shul’pin, G.B.
Alkane oxidation by the H -NaVO -H SO system in acetonitrile and
Detailed experimental procedures, characterization methods and
additional tables and figures (PDF)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
O
2
2
3
2
4
water. Tetrahedron 2009, 65, 2424-2429. (d) Rahman, A. K. M. L.; Indo,
R.; Hagiwara, H.; Ishihara, T. Direct Conversion of Ethane to Acetic Acid
over H-ZSM-5 Using H O in Aqueous Phase. Appl. Catal. A: Gen., 2013,
2 2
456, 82-87. (e) Forde, M. M.; Armstrong, R. D.; Hammond, C.; He, Q.;
Jenkins, R. L.; Kondrat, S. A.; Dimitratos, N.; Lopez-Sanchez, J. A.;
Taylor, S. H.; Willock, D.; Kiely, C. J.; Hutchings, G. J. Partial Oxidation
of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. J. Am.
Chem. Soc. 2013, 135, 11087-11099. (f) Alvarez, L.X.; Sorokin, A.B.
AUTHOR INFORMATION
Corresponding Author
*
*
Mild Oxidation of Ethane to Acetic Acid by H
sSupported µ-Nitrido Diiron Phthalocyanines. J. Organomet. Chem., 2015,
93, 139-144. (g) Forde, M.M.; Armstrong, R.D.; McVicker, R.; Wells,
2 2
O Catalyzed by
Author Contributions
#These authors contributed equally to this work.
7
P.P.; Dimitratos, N.; He, Q.; Lu, L.; Jenkins, R.L.; Hammond, C.; Lopez-
Sanchez, J.A.; Kiely, C.J.; Hutchings G. J. Light Alkane Oxidation Using
Catalysts Prepared by Chemical Vapour Impregnation: Tuning Alcohol
Selectivity Through Catalyst Pre-treatment. Chem. Sci., 2014, 5, 3603-
Notes
The authors declare no competing financial interest.
3
616. (h) Armstrong, R. D.; Nadine Ritterskamp, V. P.; Kiely, C. J.;
Taylor, S. H.; Hutchings, G. J. The Role of Copper Speciation in the Low
Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-
ACKNOWLEDGMENT
5
Catalysts. ChemPhysChem, 2018, 19, 469-478. (i) Li, Y.; Tang, Y.;
This work was supported by the National Natural Science
Foundation of China (21725301, 21932002, 91645115, 21821004,
U1732267, 51872008, 21573254, 91845201), the Ministry of
Science and Technology (2017YFB0602200), Beijing Natural
Science Foundation (No. 1182005), the Youth Innovation
Promotion Association, Chinese Academy of Science (CAS). The
XAS experiments were conducted in Shanghai Synchrotron
Radiation Facility (SSRF).
Nguyen, L.; Tao, F. F. Catalytic Oxidation of Ethane to Carboxylic Acids
in the Liquid Phase at Near Room Temperature at Ambient Pressure. ACS
Sustainable Chem. Eng., 2019, 75, 4707-4715.
(5) (a) Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M.
Mild Oxidation of Methane to Methanol or Acetic Acid on Supported
Isolated Rhodium Catalysts. Nature, 2017, 551, 605-608. (b) Tang, Y.; Li,
Y. T.; Fung, V.; Jiang, D. E.; Huang, W. X.; Zhang, S. R.; Iwasawa, Y.;
Sakata, T.; Nguyen, L.; Zhang, X. Y.; Frenkel, A. I.; Tao, F. Single
Rhodium Atoms Anchored in Micropores for Efficient Transformation of
Methane under Mild Conditions. Nat. Commun., 2018, 9, 1231.
(6) (a) Solymosi, F.; Novak, E.; Molnar, A. Infrared Spectroscopic Study
on CO-Induced Structural Changes of Iridium on an Alumina Support. J.
Phys. Chem., 1990, 94, 7250-7255. (b) Mihaylov, M.; Ivanova, E.;
Thibault-Starzyk, F.; Daturi, M.; Dimitrov, L.; Hadjiivanov, K. New
Types of Nonclassical Iridium Carbonyls Formed in Ir-ZSM-5:ꢀ A Fourier
Transform Infrared Spectroscopy Investigation. J. Phys. Chem. B, 2006,
REFERENCES
(1) (a) Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Methane Activation: the Past
and Future. Energy Environ. Sci., 2014, 7, 2580-2591; (b)Degirmenci, V.;
Uner, D.; Yilmaz, A. Methane to Higher Hydrocarbons via Halogenation.
Catal. Today, 2005, 106, 252-255; (c) Lin, R.; Amrute, A. P.; Pérez-
Ramírez, J. Halogen-Mediated Conversion of Hydrocarbons to
Commodities. Chem. Rev., 2017, 117, 4182-4247. (d) Kwon, Y.; Kim, T.
Y.; Kwon, G.; Yi, J.; Lee, H. Selective Activation of Methane on Single-
Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. J.
Am. Chem. Soc., 2017, 139, 17694-17699. (e) Marcinkowski, M. D. Darby,
M. T.; Liu, J.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.;
Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu
Single-atom Alloys as Coke-resistant Catalysts for Efficient C-H
Activation. Nat. Chem., 2018, 10, 325-332. (f) Guo, Y.; Lang, R.; Qiao B.
Highlights of Major Progress on Single-Atom Catalysis in 2017. Catalysts,
1
10, 10383-10389. (c) Aguirre, A.; C. Barrios, E.; Aguilar-Tapia, A.;
Zanella, R.; Baltanas, M. A.; Collins, S. E. In-Situ DRIFT Study of Au-
Ir/Ceria Catalysts: Activity and Stability for CO Oxidation. Top. Catal.,
2016, 59, 347–356.
(7) Lu, Y.; Wang, J.; Yu, L.; Kovarik, L.; Zhang, X.; Hoffman, A. S.,
Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T.; Dagle, V.; Xin, H. Karim, A.
M. Identification of the Active Complex for CO Oxidation over Single-
2 4
atom Ir-on-MgAl O Catalysts. Nat. Catal., 2019, 2, 149-156.
(8) (a) Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y.-T.; Tan,
Y.; Qiao, B.; Li, L.; Wang, A.; Wang, X.; Zhang, T. Hydroformylation of
2
019, 9, 135.
Olefins by a Rhodium Single‐Atom Catalyst with Activity Comparable to
RhCl(PPh ) . Angew. Chem., Int. Ed., 2016, 55, 16054-16058. (b) Gate, B.
3 3
C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Atomically
Dispersed Supported Metal Catalysts: Perspectives and Suggestions for
Future Research. Catal. Sci. Technol., 2017, 7, 4259-4275.
(2) (a) Batiot, C.; Hodnett, B. K. The Role of Reactant and Product Bond
Energies in Determining Limitations to Selective Catalytic Oxidations.
Appl Catal A: Gen., 1996, 137, 179-191. (b) Blanksby, S.J.; Ellison, G.B.
Bond Dissociation Energies of Organic Molecules. Acc. Chem. Res., 2003,
3
6, 255-263. (c) Armstrong, R. D.; Hutchings, G. J.; Taylor, S. H. An
(9) (a) Lin, M.; Hogan, T. E.; Sen, A. Catalytic Carbon-Carbon and
Overview of Recent Advances of the Catalytic Selective Oxidation of
Ethane to Oxygenates. Catalysts, 2016, 6, 71.
Carbon-Hydrogen Bond Cleavage in Lower Alkanes. Low-Temperature
Hydroxylations and Hydroxycarbony- lations with Dioxygen as the
Oxidant. J. Am. Chem. Soc., 1996, 118, 4574-4580. (b) Lin, M.; Hogan, T.;
Sen, A Highly Catalytic Bimetallic System for the Low-Temperature
Selective Oxidation of Methane and Lower Alkanes with Dioxygen as the
Oxidant. J. Am. Chem. Soc., 1997, 119, 6048-6053.
(3)(a) Wang, Y.; Otsuka, K.; Partial Oxidation of Ethane by Reductively
Activated Oxygen over Iron Phosphate Catalyst. J. Catal., 1997, 171, 106-
114. (b) Zhao, Z.; Yamada, Y.; Teng, Y.; Ueda, A.; Nakagawa, K.;
Kabayashi, T. Selective Oxidation of Ethane to Acetaldehyde and
Acrolein over Silica-Supported Vanadium Catalysts Using Oxygen as
Oxidant. J. Catal., 2000, 190, 215-227. (c) Lou, Y.; Wang, H.; Zhang, Q.;
Wang, Y. SBA-15-Supported Molybdenum Oxides as Efficient Catalysts
for Selective Oxidation of Ethane to Formaldehyde and Acetaldehyde by
(10) (a) Marinova, Ts. S.; Kostov, K. L.; Adsorption of Acetylene and
Ethylene on a Clean Ir(111) Surface. Surf. Sci., 1987, 171, 573-585. (b)
Dückers, K.; Bonzel, H.P. Core and Valence Level Spectroscopy with Y
4
ACS Paragon Plus Environment