Articles
Nature Chemistry
9.
Ito, Y., Hirao, T. & Saegusa, T. Synthesis of α,β-unsaturated carbonyl
compounds by palladium (II)-catalyzed dehydrosilylation of silyl enol ethers.
J. Org. Chem. 43, 1011–1013 (1978).
26. Kingston, C. et al. A survival guide for the ‘Electro-curious ’. Acc. Chem. Res.
53, 72–83 (2020).
27. Xiang, J. et al. Hindered dialkyl ether synthesis via electrogenerated
carbocations. Nature 573, 398–401 (2019).
1
0. Shimizu, I. & Tsuji, J. Palladium-catalyzed decarboxylation–dehydrogenation
of allyl β-keto carboxylates and allyl enol carbonates as a novel synthetic
method for α-substituted α,β-unsaturated ketones. J. Am. Chem. Soc. 104,
3
28. Takahira, Y. et al. Electrochemical C(sp )-H ꢂuorination. Synlett 30,
1178–1182 (2019).
5844–5846 (1982).
29. Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl
amination: scope, mechanism, and applications. J. Am. Chem. Soc. 141,
6392–6402 (2019).
30. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction
inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).
31. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical
methods since 2000: on the verge of a renaissance. Chem. Rev. 117,
13230–13319 (2017).
32. Li, C. et al. Electrochemically enabled, nickel-catalyzed amination.
Angew. Chem. Int. Ed. 56, 13088–13093 (2017).
33. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H
bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).
34. Rosen, J. D., Nelson, T. D., Huꢃman, M. A. & McNamara, J. M. A convenient
synthesis of 3-aryl-δ-lactones. Tetrahedron Lett. 44, 365–368 (2003).
35. Cai, X. C. & Snider, B. B. Synthesis of the spiroiminal moiety and
approaches to the synthesis of marineosins A and B. J. Org. Chem. 78,
12161–12175 (2013).
36. Tanaka, K., Ushio, H., Kawabata, Y. & Suzuki, H. Asymmetric synthesis of
(R)-(–)- and (S)-(+)-muscone by enantioselective conjugate addition of chiral
dimethylcuprate to (E)-cyclopentadec-2-en-1-one. J. Chem. Soc. Perkin Trans.
1 1991, 1445–1452 (1991).
37. Feng, R., Smith, J. A. & Moeller, K. D. Anodic cyclization reactions and the
mechanistic strategies that enable optimization. Acc. Chem. Res. 50,
2346–2352 (2017).
1
1
1
1. Diao, T. & Stahl, S. S. Synthesis of cyclic enones via direct
palladium-catalyzed aerobic dehydrogenation of ketones. J. Am. Chem. Soc.
1
33, 14566–14569 (2011).
2. Nicolaou, K. C., Zhong, Y. L. & Baran, P. S. A new method for the one-step
synthesis of α,β-unsaturated carbonyl systems from saturated alcohols and
carbonyl compounds. J. Am. Chem. Soc. 122, 7596–7597 (2000).
3. Nicolaou, K. C., Montagnon, T., Baran, P. S. & Zhong, Y. L. Iodine(v) reagents
in organic synthesis. Part 4. o-Iodoxybenzoic acid as a chemospeciꢀc tool for
single electron transfer-based oxidation processes. J. Am. Chem. Soc. 124,
2245–2258 (2002).
1
4. Chen, Y., Romaire, J. P. & Newhouse, T. R. Palladium-catalyzed
α,β-dehydrogenation of esters and nitriles. J. Am. Chem. Soc. 137,
5875–5878 (2015).
1
5. Huang, D., Zhao, Y. & Newhouse, T. R. Synthesis of cyclic enones by
allyl-palladium-catalyzed α,β-dehydrogenation. Org. Lett. 20, 684–687 (2018).
6. Chen, Y., Turlik, A. & Newhouse, T. R. Amide α,β-dehydrogenation using
allyl-palladium catalysis and a hindered monodentate anilide. J. Am. Chem.
Soc. 138, 1166–1169 (2016).
1
1
1
7. Huang, D., Szewczyk, S. M., Zhang, P. & Newhouse, T. R. Allyl-nickel
catalysis enables carbonyl dehydrogenation and oxidative cycloalkenylation of
ketones. J. Am. Chem. Soc. 141, 5669–5674 (2019).
8. Chen, M. & Dong, G. Copper-catalyzed desaturation of lactones, lactams,
and ketones under pH-neutral conditions. J. Am. Chem. Soc. 141,
14889–14897 (2019).
38. Murphy, J. A., Khan, T. A., Zhou, S., ꢄomson, D. W. & Mahesh, M.
Highly eꢅcient reduction of unactivated aryl and alkyl iodides by a
ground-state neutral organic electron donor. Angew. Chem. Int. Ed. 44,
1356–1360 (2005).
1
2
2
2
9. Chen, M. & Dong, G. Direct catalytic desaturation of lactams enabled by soꢁ
enolization. J. Am. Chem. Soc. 139, 7757–7760 (2017).
0. Chen, M., Rago, A. J. & Dong, G. Platinum‐catalyzed desaturation of lactams,
ketones, and lactones. Angew. Chem. Int. Ed. 130, 16437–16441 (2018).
1. Shono, T., Matsumura, Y. & Nakagawa, Y. Electroorganic chemistry. XII.
Anodic oxidation of enol esters. J. Am. Chem. Soc. 96, 3532–3536 (1974).
2. Shono, T., Okawa, M. & Nishiguchi, I. Electroorganic chemistry. XXI.
Selective formation of α-acetoxy ketones and general synthesis of
39. Tang, F. & Moeller, K. D. Anodic oxidations and polarity: exploring the
chemistry of oleꢀnic radical cations. Tetrahedron 65, 10863–10875 (2009).
40. Wiitala, K. W., Hoye, T. R. & Cramer, C. J. Hybrid density functional
13
1
methods empirically optimized for the computation of C and H chemical
shiꢁs in chloroform solution. J. Chem. ꢀeory Comput. 2, 1085–1092 (2006).
41. Jain, R., Bally, T. & Rablen, P. R. Calculating accurate proton chemical shiꢁs
of organic molecules with density functional methods and modest basis sets.
J. Org. Chem. 74, 4017–4023 (2009).
2
,3-disubstituted 2-cyclopentenones through the anodic oxidation of enol
acetates. J. Am. Chem. Soc. 97, 6144–6147 (1975).
2
2
2
3. Reddy, S. H. K., Chiba, K., Sun, Y. & Moeller, K. D. Anodic oxidations of
electron-rich oleꢀns: radical cation based approaches to the synthesis of
bridged bicyclic ring skeletons. Tetrahedron 57, 5183–5197 (2001).
4. Perkins, R. J., Feng, R., Lu, Q. & Moeller, K. D. Anodic cyclizations,
seven‐membered rings, and the choice of radical cation vs. radical pathways.
Chin. J. Chem. 37, 672–678 (2019).
42. Handy, S. T. & Zhang, Y. A simple guide for predicting regioselectivity
in the coupling of polyhaloheteroaromatics. Chem. Commun. 2006,
299–301 (2006).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
5. Sperry, J. B., Whitehead, C. R., Ghiviriga, I., Walczak, R. M. & Wright, D. L.
Electrooxidative coupling of furans and silyl enol ethers: application to the
synthesis of annulated furans. J. Org. Chem. 69, 3726–3734 (2004).
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2021
372