Published on Web 05/17/2007
Self-Organization of All-Inorganic Dodecatungstophosphate
Nanocrystallites
Keigo Okamoto, Sayaka Uchida, Takeru Ito, and Noritaka Mizuno*
Contribution from the Department of Applied Chemistry, School of Engineering, The UniVersity
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Abstract: The crystallinity and porosity of all-inorganic dodecatungstophosphate M
3 4
PW12O40 (M ) Cs, NH ,
Ag, denoted as MPW) particles are controlled by the changes in the synthetic temperatures and
countercations. The MPW particles can be classified into three groups by the crystallinity and porosity: (i)
mesoporous “disordered” aggregates, (ii) microporous “self-organized” aggregates, and (iii) nonporous single
crystals. The formation and growth mechanism of MPW particles is expressed by three steps: formation
of nanocrystallites, assembly of the nanocrystallites to form aggregates, and the growth of aggregates by
the attachment of nanocrystallites. The time courses of the turbidity of the synthetic solution, the concentration
of the nanocrystallites, and the average particle sizes of MPW particles are well reproduced by the calculation
based on the mechanism.
to form the structure of bone tissue, in nature.6 The
morphologies (cubic, dodecahedron, or sphere) of molybdenum
Introduction
Self-organization is the spontaneous aggregation of molecules
or particles into patterns or structures.1-9 The driving forces of
the self-organization are van der Waals interaction, hydrophobic
interaction, aromatic interaction, hydrogen-bonding, electrostatic
interaction, etc.1 For example, in the synthesis of inorganic
metal oxide molecular sieves, the metal oxide framework
precursors are formed by the progressive hydrolysis and
condensation of metal aquo ions,10,11 and the organization of
the pore structure is achieved by the electrostatic interaction
between the precursors and the structure-directing organic
molecules.4 In the self-organization of inorganic particles
such as metals, metal oxides, and metal sulfides, the control of
the shape and size is achieved also by the addition of organic
oxide particles are controlled by the use of polyethylene oxide
homopolymer with different molar masses, which act as a
structure-directing reagent. The self-organization of all-
inorganic aggregates without the aid of organics is reported only
1
6
-4
1
7
18
for copper sulfate pentahydrate, calcium carbonate, silica
19
20
carbonate, and tin oxide. While the thermodynamic morphol-
ogy of the aggregates can be predicted from their crystal
structures, most shapes are empirically controlled by changing
2
1,22
the extent of supersaturation.
In addition, the crystallinity
and porosity of all-inorganic aggregates have not yet been
controlled and the mechanism of the formation and growth is
still unclear.
,12
Polyoxometalates are inorganic metal oxide anion nanoclus-
or organometallic molecules, which act as precursors or
ters that show unique chemical properties such as catalysis by
structure-directing reagents.2
,3,5,6,12-16
For example, the inorganic
changes in the constituent elements and countercations.2
3-31
The
hydroxyapatite crystallizes along the organic collagen fibers
dodecatungstophosphoric acid H3PW12O40 is a well-known solid
acid, and the partial substitution of protons with alkali metal
(
(
(
(
1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2) C o¨ lfen, H.; Mann, S. Angew. Chem., Int. Ed. 2003, 42, 2350.
3) Katz, E.; Willner, I. Angew. Chem., Int. Ed. 2004, 43, 6042.
4) Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.;
Misono, M.; Monson, P. A.; Pez, G.; Scherer, G. W.; Vartuli, J. C.; Yaghi,
O. M. Chem. Mater. 1999, 11, 2633.
(17) Bright, N. F. H.; Garner, W. E. J. Chem. Soc. 1934, 1872.
(18) Davis, K. J.; Dove, P. M.; De Yoreo, J. J. Science 2000, 290, 1134.
(19) Garc ´ı a-Ruiz, J. M.; Hyde, S. T.; Carnerup, A. M.; Christy, A. G.; Van
Kranendonk, M. J.; Welham, N. J. Science 2003, 302, 1194.
(20) Ohgi, H.; Maeda, T.; Hosono, E.; Fujihara, S.; Imai, H. Cryst. Growth
Des. 2005, 5, 1079.
(21) Piana, S.; Reyhani, M.; Gale, J. D. Nature 2005, 438, 70.
(22) Melia, T. P.; Moffitt, W. P.J. Colloid Sci. 1964, 19, 433.
(23) Pope, M. T.; M u¨ ller, A. Angew. Chem., Int. Ed. 1991, 30, 34.
(24) Okuhara, T.; Mizuno, N.; Misono, M. AdV. Catal. 1996, 41, 113.
(25) Hill, C. L., Ed. Polyoxometalates. Chem. ReV. 1998, 98, 1.
(26) Neumann, R. Prog. Inorg. Chem. 1998, 47, 317.
(27) Yamase, T., Pope, M. T., Eds. Polyoxometalate Chemistry for Nano-
Composite Design; Kluwer: Dordrecht, The Netherlands, 2002.
(28) Kozhevnikov, I. V. Catalysis by Polyoxometalates; Wiley: Chichester,
UK, 2002.
(29) Hill, C. L. In ComprehensiVe Coordination Chemistry II; McClerverty, J.
A., Meyer, T. J., Eds.; Elsevier: Amsterdam, 2003; p 679.
(30) Neumann, R. In Modern Oxidation Methods; B a¨ ckvall, J. E., Ed.; Wiley-
VCH: Weinheim, 2004; p 223.
(31) Mizuno, N.; Kamata, K.; Yamaguchi, K. Surface and Nanomolecular
Catalysis; Taylor and Francis Group, LLC: New York, 2006; p 463.
(5) Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J. Nature 2000, 403,
2
89.
(
(
(
6) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684.
7) Seeman, N. C. Nature 2003, 421, 427.
8) Garibotti, A. V.; Knudsen, S. M.; Ellington, A. D.; Seeman, N. C. Nano
Lett. 2006, 6, 1505.
(9) Tanaka, K.; Clever, G. H.; Takezawa, Y.; Yamada, Y.; Kaul, C.; Shionoya,
M.; Carell, T. Nat. Nanotechnol. 2006, 1, 190.
(
(
(
10) Livage, J. Stud. Surf. Sci. Catal. 1994, 85, 1.
11) Livage, J. Chem. Mater. 1991, 3, 578.
12) Kirschhock, C. E. A.; Ravishankar, R.; Jacobs, P. A.; Martens, J. A. J.
Phys. Chem. B 1999, 103, 11021, and references therein.
13) Watzky, M. A.; Finke, R. G. Chem. Mater. 1997, 9, 3083.
14) Libert, S.; Gorshkov, V.; Goia, D.; Matijevi, E.; Privman, V. Langmuir
(
(
2
003, 19, 10679.
(
15) King, S.; Hyunh, K.; Tannenbaum, R. J. Phys. Chem. B 2003, 107, 12097.
16) Chen, J.; Burger, C.; Krishnan, C. V.; Chu, B. J. Am. Chem. Soc. 2005,
(
1
27, 14140.
7378
9
J. AM. CHEM. SOC. 2007, 129, 7378-7384
10.1021/ja070694c CCC: $37.00 © 2007 American Chemical Society