Page 7 of 8
Journal of the American Chemical Society
antibiotic-resistant bacteria in Switzerland. Lancet Infect. Dis.
2019, 19 (1), 17-18.
20.
Breaker, R. R., Prospects for riboswitch discovery
1
2
3
4
5
6
7
8
9
and analysis. Mol. Cell. 2011, 43 (6), 867-879.
21.
discovery of drugs that target bacterial gene-regulatory
RNAs. Acc. Chem. Res. 2011, 44 (12), 1329-38.
2.
Coates, A. R. M.; Hu, Y., Novel approaches to
Deigan, K. E.; Ferre-D'Amare, A. R., Riboswitches:
developing new antibiotics for bacterial infections. Br J
Pharmacol 2007, 152 (8), 1147-1154.
3
.
Livermore, D. M., The need for new antibiotics. Clin.
Microbiol. Infect. 2004, 10 Suppl 4, 1-9.
Monserrat-Martinez, A.; Gambin, Y.; Sierecki, E.,
22.
Wang, H.; Mann, P. A.; Xiao, L.; Gill, C.; Galgoci, A. M.;
Howe, J. A.; Villafania, A.; Barbieri, C. M.; Malinverni, J. C.; Sher,
X.; Mayhood, T.; McCurry, M. D.; Murgolo, N.; Flattery, A.;
Mack, M.; Roemer, T., Dual-Targeting Small-Molecule
Inhibitors of the Staphylococcus aureus FMN Riboswitch
Disrupt Riboflavin Homeostasis in an Infectious Setting. Cell
Chem. Biol. 2017, 24 (5), 576-588.e6.
4
.
Thinking Outside the Bug: Molecular Targets and Strategies
to Overcome Antibiotic Resistance. Int. J. Mol. Sci. 2019, 20
(6).
5
.
Perry, C.; Hall, C., Antibiotic resistance: how it arises,
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
the current position and strategies for the future. Nurs. Times
23.
Richter, M. F.; Drown, B. S.; Riley, A. P.; Garcia, A.;
2
6
009, 105 (36), 20-3.
Silver, L. L., Appropriate Targets for Antibacterial
Shirai, T.; Svec, R. L.; Hergenrother, P. J., Predictive compound
accumulation rules yield a broad-spectrum antibiotic. Nature
2017, 545 (7654), 299-304.
.
Drugs. Cold Spring Harb. Perspect. Med. 2016, 6 (12).
Sutterlin, H. A.; Malinverni, J. C.; Lee, S. H.; Balibar, C.
7
.
24.
Richter, M. F.; Hergenrother, P. J., The challenge of
J.; Roemer, T., Antibacterial New Target Discovery: Sentinel
Examples, Strategies, and Surveying Success. In
Antibacterials: Vol. I, Fisher, J. F.; Mobashery, S.; Miller, M. J.,
Eds. Springer International Publishing: Cham, 2018; pp 1-29.
converting Gram-positive-only compounds into broad-
spectrum antibiotics. Ann N Y Acad Sci 2019, 1435 (1), 18-38.
25.
Ismail, N.; Lau, G. W.; Hergenrother, P. J., Implementation of
permeation rules leads to a FabI inhibitor with activity
against Gram-negative pathogens. Nat. Microbiol. 2020, 5 (1),
67-75.
Parker, E. N.; Drown, B. S.; Geddes, E. J.; Lee, H. Y.;
8
.
Tommasi, R.; Iyer, R.; Miller, A. A., Antibacterial Drug
Discovery: Some Assembly Required. ACS Infect. Dis. 2018, 4
5), 686-695.
Zinner, S. H., The search for new antimicrobials:
(
9
.
26.
Rice, L. B., Federal funding for the study of
why we need new options. Expert Rev. Anti. Infect. Ther.
2005, 3 (6), 907-13.
antimicrobial resistance in nosocomial pathogens: no
ESKAPE. J. Infect. Dis. 2008, 197 (8), 1079-81.
27.
Lorenzo, R.; Paillier-Gonzalez, J. E.; Saldana-Campos, J. C.;
Salinas, D. F.; Lemos-Luengas, E. V., Mortality due to KPC
carbapenemase-producing Klebsiella pneumoniae infections:
Systematic review and meta-analysis: Mortality due to KPC
Klebsiella pneumoniae infections. J. Infect. 2018, 76 (5), 438-
448.
10.
Lewis, K., Platforms for antibiotic discovery. Nat.
Ramos-Castaneda, J. A.; Ruano-Ravina, A.; Barbosa-
Rev. Drug Discov. 2013, 12 (5), 371-387.
1
2
1
1.
020, 181 (1), 29-45.
2. Tommasi, R.; Brown, D. G.; Walkup, G. K.;
Lewis, K., The Science of Antibiotic Discovery. Cell.
Manchester, J. I.; Miller, A. A., ESKAPEing the labyrinth of
antibacterial discovery. Nat Rev Drug Discov 2015, 14 (8),
529-42.
28.
Xu, L.; Sun, X.; Ma, X., Systematic review and meta-
13.
Amaral, L.; Martins, A.; Spengler, G.; Molnar, J., Efflux
analysis of mortality of patients infected with carbapenem-
resistant Klebsiella pneumoniae. Ann. Clin. Microbiol.
Antimicrob. 2017, 16 (1), 18.
pumps of Gram-negative bacteria: what they do, how they do
it, with what and how to deal with them. Front. Pharmacol.
2
1
014, 4 (168).
4. Li, X.-Z.; Plésiat, P.; Nikaido, H., The Challenge of
29.
Masci, D.; Hind, C.; Islam, M. K.; Toscani, A.; Clifford,
M.; Coluccia, A.; Conforti, I.; Touitou, M.; Memdouh, S.; Wei, X.;
La Regina, G.; Silvestri, R.; Sutton, J. M.; Castagnolo, D.,
Switching on the activity of 1,5-diaryl-pyrrole derivatives
against drug-resistant ESKAPE bacteria: Structure-activity
relationships and mode of action studies. Eur. J. Med. Chem.
2019, 178, 500-514.
Efflux-Mediated Antibiotic Resistance in Gram-Negative
Bacteria. Clin. Microbiol. Rev. 2015, 28 (2), 337-418.
15.
Masi, M.; Refregiers, M.; Pos, K. M.; Pages, J. M.,
Mechanisms of envelope permeability and antibiotic influx
and efflux in Gram-negative bacteria. Nat. Microbiol. 2017, 2,
1
1
7001.
6.
30.
Lukežič, T.; Fayad, A. A.; Bader, C.; Harmrolfs, K.;
Zgurskaya, H. I.; Löpez, C. A.; Gnanakaran, S.,
Bartuli, J.; Groß, S.; Lešnik, U.; Hennessen, F.; Herrmann, J.;
Pikl, Š.; Petković, H.; Müller, R., Engineering Atypical
Tetracycline Formation in Amycolatopsis sulphurea for the
Production of Modified Chelocardin Antibiotics. ACS Chem.
Biol. 2019, 14 (3), 468-477.
Permeability Barrier of Gram-Negative Cell Envelopes and
Approaches To Bypass It. ACS Infect. Dis. 2015, 1 (11), 512-
5
17.
22.
Howe, J. A.; Wang, H.; Fischmann, T. O.; Balibar, C. J.;
Xiao, L.; Galgoci, A. M.; Malinverni, J. C.; Mayhood, T.;
Villafania, A.; Nahvi, A.; Murgolo, N.; Barbieri, C. M.; Mann, P.
A.; Carr, D.; Xia, E.; Zuck, P.; Riley, D.; Painter, R. E.; Walker, S.
S.; Sherborne, B.; de Jesus, R.; Pan, W.; Plotkin, M. A.; Wu, J.;
Rindgen, D.; Cummings, J.; Garlisi, C. G.; Zhang, R.; Sheth, P. R.;
Gill, C. J.; Tang, H.; Roemer, T., Selective small-molecule
inhibition of an RNA structural element. Nature 2015, 526
31.
Li, Y.; Gardner, J. J.; Fortney, K. R.; Leus, I. V.; Bonifay,
V.; Zgurskaya, H. I.; Pletnev, A. A.; Zhang, S.; Zhang, Z. Y.;
Gribble, G. W.; Spinola, S. M.; Duerfeldt, A. S., First-generation
structure-activity relationship studies of 2,3,4,9-tetrahydro-
1H-carbazol-1-amines as CpxA phosphatase inhibitors.
Bioorg. Med. Chem. Lett. 2019, 29 (14), 1836-1841.
32.
Fernandes, P., Fusidic Acid: A Bacterial Elongation
(
7575), 672-677.
18. Breaker, R. R., Riboswitches and Translation
Control. Cold Spring Harb. Perspect. Biol. 2018, 10 (11).
9. Breaker, R. R., Riboswitches and the RNA world.
Cold Spring Harb. Perspect. Biol. 2012, 4 (2).
Factor Inhibitor for the Oral Treatment of Acute and Chronic
Staphylococcal Infections. Cold Spring Harb. Perspect. Med.
2016, 6 (1), a025437.
1
ACS Paragon Plus Environment