852
Directed Evolution with Ancestral Libraries
1
1
2
8. Aharoni, A., Amitai, G., Bernath, K., Magdassi, S. &
Tawfik, D. S. (2005). High-throughput screening of
enzyme libraries: thiolactonases evolved by fluores-
cence-activated sorting of single cells in emulsion
compartments. Chem. Biol. 12, 1281–1289.
sulfotransferases. Drug Metab. Pharmacokinet. 17,
221–228.
34. Ozawa, S., Shimizu, M., Katoh, T., Miyajima, A., Ohno,
Y., Matsumoto, Y. et al. (1999). Sulfating-activity and
stability of cDNA-expressed allozymes of human
phenol sulfotransferase, ST1A3⁎1 ((213)Arg) and
ST1A3⁎2 ((213)His), both of which exist in Japanese
as well as Caucasians. J. Biochem. 126, 271–277.
35. Gamage, N. U., Duggleby, R. G., Barnett, A. C.,
Tresillian, M., Latham, C. F., Liyou, N. E. et al. (2003).
Structure of a human carcinogen-converting enzyme,
SULT1A1. Structural and kinetic implications of
substrate inhibition. J. Biol. Chem. 278, 7655–7662.
36. Lehmann, M. & Wyss, M. (2001). Engineering proteins
for thermostability: the use of sequence alignments
versus rational design and directed evolution. Curr.
Opin. Biotechnol. 12, 371–375.
37. Liu, M. C., Suiko, M. & Sakakibara, Y. (2000).
Mutational analysis of the substrate binding/catalytic
domains of human M form and P form phenol
sulfotransferases. J. Biol. Chem. 275, 13460–13464.
38. Barnett, A. C., Tsvetanov, S., Gamage, N., Martin, J. L.,
Duggleby, R. G. & McManus, M. E. (2004). Active site
mutations and substrate inhibition in human sulfo-
transferase 1A1 and 1A3. J. Biol. Chem. 279,
18799–18805.
39. Copeland, R. A. (2000). Enzymes, 2nd edit. Wiley, New
York, NY.
40. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. &
Tawfik, D. S. (2006). Robustness–epistasis link shapes
the fitness landscape of a randomly drifting protein.
Nature, 444, 929–932.
41. Lehmann, M., Kostrewa, D., Wyss, M., Brugger, R.,
D'Arcy, A., Pasamontes, L. & van Loon, A. P. (2000).
From DNA sequence to improved functionality: using
protein sequence comparisons to rapidly design a
thermostable consensus phytase. Protein Eng. 13,
49–57.
42. Khersonsky, O., Rosenblat, M., Toker, L., Yacobson,
S., Hugenmatter, A., Silman, I. et al. (2009). Directed
evolution of serum paraoxonase PON3 by family
shuffling and ancestor/consensus mutagenesis, and
its biochemical characterization. Biochemistry, 48,
6644–6654.
43. Gaucher, E. A. (2007). In Ancestral Sequence Recon-
struction (Liberles, D. A., ed.), Oxford University
Press, New York, NY.
44. Benner, S. A. (2003). Interpretive proteomics—finding
biological meaning in genome and proteome data-
bases. Adv. Enzyme Regul. 43, 271–359.
45. Cole, M. F. & Gaucher, E. A. (2010). Exploiting models
of molecular evolution to efficiently direct protein
engineering. J. Mol. Evol. 72, 193–203.
46. Stemmer, W. P. (1994). DNA shuffling by random
fragmentation and reassembly: in vitro recombination
for molecular evolution. Proc. Natl Acad. Sci. USA, 91,
10747–10751.
47. Meyer, M. M., Silberg, J. J., Voigt, C. A., Endelman, J. B.,
Mayo, S. L., Wang, Z. G. & Arnold, F. H. (2003). Library
analysis of SCHEMA-guided protein recombination.
Protein Sci. 12, 1686–1693.
48. Li, W. & Godzik, A. (2006). Cd-hit: a fast program for
clustering and comparing large sets of protein or
nucleotide sequences. Bioinformatics, 22, 1658–1659.
9. Gupta, R. D., Goldsmith, M., Ashani, Y., Simo, Y.,
Mullokandov, G., Bar, H. et al. (2011). Directed
evolution of hydrolases for prevention of G-type
nerve agent intoxication. Nat. Chem. Biol. 7,
120–125.
0. Aharoni, A., Gaidukov, L., Yagur, S., Toker, L.,
Silman, I. & Tawfik, D. S. (2004). Directed evolution
of mammalian paraoxonases PON1 and PON3 for
bacterial expression and catalytic specialization. Proc.
Natl Acad. Sci. USA, 101, 482–487.
2
1. Draganov, D. I. & La Du, B. N. (2004). Pharmacoge-
netics of paraoxonases: a brief review. Naunyn-
Schmiedeberg's Arch. Pharmacol. 369, 78–88.
2. Khersonsky, O. & Tawfik, D. S. (2005). Structure–
reactivity studies of serum paraoxonase PON1 sug-
gest that its native activity is lactonase. Biochemistry,
2
44, 6371–6382.
2
3. Draganov, D. I., Teiber, J. F., Speelman, A., Osawa, Y.,
Sunahara, R. & La Du, B. N. (2005). Human
paraoxonases (PON1, PON2, and PON3) are lacto-
nases with overlapping and distinct substrate speci-
ficities. J. Lipid Res. 46, 1239–1247.
2
4. Teiber, J. F. & Draganov, D. I. (2011). High-performance
liquid chromatography analysis of N-acyl homoserine
lactone hydrolysis by paraoxonases. Methods Mol. Biol.
692, 291–298.
2
5. Gaidukov, L., Bar, D., Yacobson, S., Naftali, E.,
Kaufman, O., Tabakman, R. et al. (2009). In vivo
administration of BL-3050: highly stable engineered
PON1–HDL complexes. BMC Clin. Pharmacol. 9, 18.
6. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold,
F. H. (2006). Protein stability promotes evolvability.
Proc. Natl Acad. Sci. USA, 103, 5869–5874.
2
2
2
7. Khersonsky, O. & Tawfik, D. S. (2006). Chromogenic
and fluorogenic assays for the lactonase activity of
serum paraoxonases. ChemBioChem, 7, 49–53.
8. Aharoni, A., Gaidukov, L., Khersonsky, O., McQ
Gould, S., Roodveldt, C. & Tawfik, D. S. (2005). The
‘
evolvability’ of promiscuous protein functions. Nat.
Genet. 37, 73–76.
2
9. Harel, M., Aharoni, A., Gaidukov, L., Brumshtein, B.,
Khersonsky, O., Meged, R. et al. (2004). Structure and
evolution of the serum paraoxonase family of detox-
ifying and anti-atherosclerotic enzymes. Nat. Struct.
Mol. Biol. 11, 412–419.
0. Bershtein, S., Goldin, K. & Tawfik, D. S. (2008). Intense
neutral drifts yield robust and evolvable consensus
proteins. J. Mol. Biol. 379, 1029–1044.
1. Gaucher, E. A., Thomson, J. M., Burgan, M. F. &
Benner, S. A. (2003). Inferring the palaeoenvironment
of ancient bacteria on the basis of resurrected proteins.
Nature, 425, 285–288.
2. Allali-Hassani, A., Pan, P. W., Dombrovski, L.,
Najmanovich, R., Tempel, W., Dong, A. et al. (2007).
Structural and chemical profiling of the human
cytosolic sulfotransferases. PLoS Biol. 5, e97.
3. Nishiyama, T., Ogura, K., Nakano, H., Kaku, T.,
Takahashi, E., Ohkubo, Y. et al. (2002). Sulfation
of environmental estrogens by cytosolic human
3
3
3
3