Maestri, B.; Mabey, W. R.; Holt, B. R.; Gould, C. Water-Related
Environmental Fateof129 PriorityPollutants;U.S. Environmental
Protection Agency: Washington, DC, 1979; EPA-440/ 4-79-029.
The interaction of oxygen with electronically excited
states can produce a theoretical optimum quantum yield
for singlet oxygen production (æ∆) of 2, a value that is rarely
observed (18). Achieving the optimum æ∆ requires an S1-
T1 energy gap . 7882 cm-1 (19). The reported value of æ∆
for PH is only 0.5 in methanol (18), and the source of singlet
oxygen, in this case, is limited to oxygen quenching of the
T1 state of PH. This is due to the small S1-T1 splitting in
PH (7300 cm-1) (19), which is less than the 0,0 excitation
energy of O2(1∆g) (7882 cm-1). Singlet oxygen production
is not depicted as accompanying intersystem crossing (isc)
in Scheme 2. It has previously been shown that the rate
of oxygen quenching of pyrene triplets on silica (1.7 × 106
m3 mol-1 s-1) is approximately twice as fast as on alumina
(9.4 × 105 m3 mol-1 s-1) (20). The relative rate of PH(T1)
quenching on silica versus alumina is likely to resemble
the behavior reported for pyrene quenching. This assertion
is supported by the fact that the two molecules are very
similar in size, thereby allowing them to occupy similar
surface sites and experience similar effects of shielding from
oxygen bombardment at the surface. The lifetime of the
triplet state of PH, relative to that of pyrene, is irrelevant
to this argument since our concern is with the rate of oxygen
quenching of the T1 state of PH on silica versus alumina.
On the basis of these arguments, the previously reported
enhancement in photolysis rate on alumina (t1/ 2 ) 45 h) (2)
relative to the rate on silica (t1/ 2 ) 150 h) (2) cannot be
explained by the differential quenching of the triplet state
of PH by oxygen on these two substrates. The enhanced
rate ofphotolysis on alumina is more likely due to additional
mechanistic pathways involving Lewis acid sites on the
alumina (20). The previously observed PH photodegra-
dation half-lives on fly ash (49 h) (2) and on carbon black
(>1000 h) (2) are more difficult to address. The large
variation in fly ash color and composition offer the
possibility of multiple mechanistic pathways involving
oxidation by singlet oxygen and/ or electron transfer. Both
processes can be initiated by energy transfer or direct
photolysis and possibly inhibited by competitive absorption
of the incident light. The long life time observed on carbon
black is likely due to severalprocesses including competitive
absorption of the incident light, energy transfer from PH
to the large constituent PAH in carbon black, and more
facile reactions of singlet oxygen with the substrate.
(2) Behymer, T. D.; Hites, R. A. Environ. Sci. Technol. 1985, 19, 1004.
(3) (a) Korfmacher, W. A.; Natusch, D. F. S.; Taylor, D. R.; Mamantov,
G.; Wehry, E. L. Science 1980, 207, 764. (b) Korfmacher, W. A.;
Wehry, W. L.; Mamantov, G.; Natusch, D. F. S. Environ. Sci.
Technol. 1980, 14, 1094.
(4) (a) Dabestani, R.;Ellis, K. J.;Sigman, M. E.J. Photochem. Photobiol.
A: Chem. 1995, 86, 231. (b) Sigman, M. E.; Chevis, E. A.; Brown,
A.; Barbas, J. T.; Dabestani, R.; Burch, E. L. J. Photochem.
Photobiol. A: Chem., in press. (c) Sigman, M. E.; Barbas, J. T.;
Chevis, E. A.; Dabestani, R. New J. Chem., in press. (d) Dabestani,
R.; Nelson, M.; Sigman, M. J. Photochem. Photobiol. A: Chem.
1995, 92, 201. (e) Barbas, J. T.; Dabestani, R.; Sigman, M. E. J.
Photochem. Photobiol. A: Chem. 1994, 80, 103. (f) Sigman, M.
E.; Zingg, S. P. In Environmental Aspects of Surface and Aquatic
Photochemistry; Helz, D., Zepp, R. G., Eds.; Lewis Publishers:
Boca Raton, FL, 1994, p 197. (g) Zingg, S. P.; Sigman, M. E.
Photochem. Photobiol. 1993, 57, 453. (h) Barbas, J. T.; Sigman,
M. E.; Buchanan, A. C., III; Chevis, E. A. Photochem. Photobiol.
1993, 58, 155. (i) Zingg, S. P.;Pagni, R. M.;Burns, J. H. Tetrahedron
Lett. 1991, 32, 5737.
(5) Guillard, C; Delprat, H.; Hoang-van, C.; Pichat, P. J. Atmos. Chem.
1993, 126, 47, and references cited therein.
(6) Mackay, D.; Shiu, W. Y.; Ma, K. C. Illustrated Handbook of
Physical-Chemical Propertiesand Environmental Fatefor Organic
Chemicals, Vol. II; Lewis Publishers: Chelsea, MI, 1992; pp 132-
140.
(7) Dowty, B. J.; Brightwell, N. E.; Laseter, J. L.; Griffin, G. W. Biochem.
Biophys. Res. Commun. 1974, 57, 452.
(8) Yamasaki, H.; Kuwata, K.; Miyamoto, H. Environ. Sci. Technol.
1982, 16, 189.
(9) Kwo, E. S. C.; Harger, W. P.; Arey, J.; Atkinson, R. Environ. Sci.
Technol. 1994, 28, 521.
(10) DeBoer, T. J.; Backer, H. J. Organic Synthesis, Collective Volume
IV; Rabjohn, N., Ed.; John Wiley: New York, 1963; pp 250-253.
(11) Moriconi, E. J.; Wallenberger, F. T.; O’Connor, W. F. J. Org. Chem.
1959, 24, 86.
(12) Minato, H.; Matsuzakim H. Miwa, K. Bull. Chem. Soc. Jpn. 1968,
41, 249.
(13) (a) Livingston, R.; Zeldes, H. J. Chem. Phys. 1966, 44, 1245-1259.
(b) Livingston, R.; Zeldes, H. J. Chem. Phys. 1967, 47, 4173-
4180.
(14) Azumi, T.; McGlynn, S. P. J. Chem. Phys. 1964, 41, 3131.
(15) Gollnick, K.; Griesbeck, A. Photochem. Photobiol. 1985, 41, 2057.
(16) (a) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1975, 97, 3978.
(b) Dewar, M. J. S.; Griffin, A. C.; Thiel, W.; Turchi, I. J. J. Am.
Chem. Soc. 1975, 97, 4439. (c) Inagaki, S; Fukui, K. J. Am. Chem.
Soc. 1975, 97, 7480.
(17) Dewar, M. J. S. J. Am. Chem. Soc. 1952, 74, 3357.
(18) Gorman, A. A.; Rodgers, M. A. Handbook of Organic Photo-
chemistry, Vol. II; Scaiano, J. C., Ed.; CRC Press: Boca Raton, FL,
1989; pp 229-247.
(19) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Inter-
sience: New York, 1970; pp 142-192.
(20) Thomas, J. K. Chem. Rev. 1993, 93, 301 and references cited
Acknowledgments
Research sponsored by the Division of Chemical Sciences,
Office of Basic Energy Sciences, U.S. Department of Energy
under Contract DE-AC05-84OR21400 with Lockheed-Martin
Inc.
therein.
Received for review October 18, 1995. Revised manuscript
received January 8, 1996. Accepted January 30, 1996.X
ES950769P
Literature Cited
(1) Callahan, M. A.; Slimak, M. W.; Gabelc, N. W.; May, I. P.; Fowler,
C. F.; Freed, J. R.; Jennings, P.; Durfee, R. L.; Whitmore, F. C.;
X Abstract published in Advance ACS Abstracts, April 1, 1996.
9
1 7 8 0 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 30, NO. 5, 1996