4
Tetrahedron
18. Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J.
Am. Chem. Soc. 2006,128, 6829-6836.
Peak
Number
Retention
time
(min)
Area
Height Concentration Component
(ppm)
name
(S/cm) S/cm
× min
19. Kuvila, H. G.; Nahabedian, K. V. J. Am. Chem. Soc. 1961, 83,
2159-2166.
20. Kuivila, H. G.; Reuwer, J. F.; Mangravite, J. A. J. Am. Chem. Soc.
1964, 86, 2666-2670.
1
2
3
4
5
5.522
7.230
11.085
23.077
25.575
0.0043
0.7164
39.5759 83.839
0.0746
0.0031
0.030
3.353
0.054
28.315
3215.575
3.438
Lithium
Sodium
Potassium
Calcium
Magnesium
21. Boruah, P. R.; Ali, A. A.; Chetia, M.; Saikia, B.; Sarma, D. Chem.
Comm. 2015, 51, 11489-11492.
22. Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A.
ChemSusChem. 2010, 5, 502-522.
0.175
0.024
0.075
Fig. 5. Metal concentration of the natural base by Ion-Exchange
chromatography.
23. Mondal, M.; Bora, U. Green Chem. 2012, 14, 1873-1876.
24. Mondal, M.; Bora, U.; Tetrahedron Lett. 2014, 55, 3038-3040.
25. Mondal, M.; Bora, U. Appl. Organometal. Chem. 2014, 28, 354-
358.
26. Liu, C. Ni, Q. Bao, F. Qiu, J. Green Chem. 2011, 13, 1260-1266.
27. Goncalvesa, C.; Favrea, C.; Feuardanta, P.; Kleina, S.; Vaca-
Garciaa, C.; Cecuttia, C.; Thiébaud-Rouxa, S.; Vedrenne, E.
Carbohydr. Polym. 2015, 116, 51-59.
Table.3. Comparisons of metals contents (in ppm) in
WERSA using Ion-Exchange chromatography and Flame
photometry analysis.
Entry
Metal
Metal
concentration
by IC [ppm]
Trace
Metal concentration
28. Liu, C.; Ni, Q.; Hu, P.; Qiu, J. Org. Biomol. Chem. 2011, 9, 1054-
1060.
by flame photometry [ppm]
29. Qiu, J.; Wang, L.; Liu, M.; Shen, Q.; Tang, J. Tetrahedron Lett.
2011, 52, 6489-6491.
30. Sarmah, G.; Mondal, M.; Bora, U. Appl. Org. Chem. 2015, 29,
495-498.
31. Han, W.; Liu, C.; Jin, Z. Adv. Synth. Catal. 2008, 350, 501-508.
32. Gogoi, A.; Dewan, A.; Bora, U. RSC Adv. 2015, 5, 16-19.
33. Zhao, G.; Wang, Z.; Wang, R.; Li, J.; Zou, D.; Wu, Y.
Tetrahedron Lett. 2014, 55 5319-5322.
1
2
3
4
5
Li
Na
K
Trace
25.36
3025.25
4.05
28.31
3215.5
3.43
Trace
Ca
Mg
Trace
In conclusion, we have developed an improved protocol for
Suzuki-Miyaura reaction with the aid of in situ generated PdNPs
in biphasic media. The reaction has been performed with rice
straw ash in water-isopropanol without using any organic or
inorganic base. The metal oxide present in rice straw ash is
responsible for the basicity of the aqueous reaction medium. The
main advantage of the present reaction system is the use of an
abundant agro waste, rice straw ash as alternative base in Suzuki-
Miyaura reaction.
34. Xu, S.; Chen, H.-H.; Dai, J.-J.; Xu, H.-J. Org. Lett. 2014, 16,
2306-2309.
35. Zhang, B.; Song, J.; Liu, H.; Shi, J.; Ma, J.; Fan, H.; Wang, W.;
Zhang, P.; Han, B . Green Chem. 2014, 16, 1198-1201.
36. A 50 mL round-bottom flask was charged with a mixture of aryl
boronic acid (1.2 mmol), aryl halide (1 mmol), 2 mL distilled
water and 2 mL of iso-propanol. To this mixture 1 mol% of
Pd(OAc)2 was added followed by the addition of the 0.3 g of rice
straw ash. The whole reaction mixture was stirred for the required
time resulting a black colour solution. The reaction was monitored
by TLC and after completion of the reaction the solution was
extracted three times with ethyl acetate (3x10 mL). The products
were purified by column chromatography and confirmed by 1H
and 13C NMR spectroscopy.
Acknowledgement
Authors are thankful to Tezpur University for providing
infrastructure facility to carry out the project and also for
providing start up grant to UB and institutional fellowship to A.
M.
Notes and references:
1.
2.
Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6722-6737.
Nikolay,
A.;
Bumagin,
Catal.
Commun.
doi:
10.1016/j.catcom.2016.02.016
3.
Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.;
Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181-5203.
Sellars, J. D.; Steel, P. G.; Chem. Soc. Rev. 2011, 40, 5170-5180.
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483
Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron. 2008, 64,
3047-3101.
4.
5.
6.
7.
8.
Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461-470.
Fujihara, T.; Yoshida, S.; Ohta, H.; Tsuji, Y. Angew. Chem. Int.
Ed. 2008, 47, 8310-8314.
9.
Das, P.; Linert, W. Coord. Chem. Rev. 2016, 311, 1-23.
10. Felpin, F.-X.; Ayad. T.; Mitra, S. Eur. J. Org. Chem. 2006, 2679-
2690.
11. Liu, C., Li, X. The Chemical Record, 2015, doi:
10.1002/tcr.201500218.
12. Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2013,
52, 7362-7370.
13. Miyaura, N. J. Organomet. Chem. 2002, 653, 54-57.
14. Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am.
Chem. Soc. 2005, 127, 9298-9307.
15. Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116-
2119.
16. Schmidt, A. F.; Kurokhtina, A. A.; Larina, E. V. Russ. J. Gen.
Chem. 2011, 81, 1573-1574.
17. Moreno-Manãs, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996,
61, 2346-2351.