Paper
Dalton Transactions
3
7
According to the previous report, the reason for these
4 X. F. Zhou, L. Lin, W. Wang and S. Y. Wang, J. Cryst.
Growth, 2011, 314, 302.
changes may be the size effect and could be mainly attributed
to the presence of the protective layer on the NiS
nanostructure.
2
5 W. Dong, L. An, X. Wang, B. Li, B. Chen and W. Tang,
J. Alloys Compd., 2011, 509, 2170.
3
7,43
6
W. Zhang, L. Xu, K. Tang, F. Li and Y. Qian, Eur. J. Inorg.
Chem., 2005, 2005, 653.
7
H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen and
J. Zhang, Sci. Rep., 2014, 4, 3577.
Conclusions
Although there have been numerous studies on the NiS
2
nano-
8 N. Chen, J. H. Zeng, F. Q. Li, W. Q. Zhang and Y. T. Qian,
J. Cryst. Growth, 2002, 235, 505.
9 S. L. Yang, H. B. Yao, M. R. Gao and S. H. Yu, CrystEng-
Comm, 2009, 11, 1383.
structures precipitation using sodium thiosulphate as a sulfur
source, this study focus on the use of sodium thiosulfate as
both the sulfur source and the stabilizer to produce a new type
of the NiS
magnetic properties. In this work, NiS2 nanostructures have
been successfully prepared via a facile solvothermal method 11 P. G. Niklowitz, P. L. Alireza, M. J. Steiner, G. G. Lonzarich,
2
nanostructures with diverse chemical, optical and 10 K. D. M. Rao, T. Bhuvana, B. Radha, N. Kurra and
N. S. Vidhyadhiraja, J. Phys. Chem. C, 2011, 115, 10462.
using the Ni(II)-Salen complex and Na
The key insights obtained from the our study are that the pure
NiS
Ni(II)-Salen complex, which is an aliphatic tetradentate Ni(II)-
Schiff base complex, but it is difficult to obtain a pure phase of 13 T. Thio and J. W. Bennett, Phys. Rev. B: Condens. Matter,
nickel sulfides using an aromatic tetradentate Ni(II)-Schiff 1995, 52, 3555.
2
S
2
O
3
in DMF solvent.
D. Braithwaite, G. Knebel, J. Flouquet and J. A. Wilson,
Phys. Rev. B: Condens. Matter, 2008, 77, 115135.
2
nanostructure can be synthesized from the precursor 12 G. Krill, P. Panissod, M. F. Lapierre, F. Gautier and
C. Robert, J. Phys., 1976, 37, 23.
base complex, such as the Ni(II)-Salophen complex or simple 14 G. Andersen and P. Kofstad, Oxid. Met., 1995, 43, 173.
mono and bidentate Ni(II) complexes, such as NiCl ·6H O, 15 H. S. Jarret, W. H. Cloud, R. J. Bouchard, S. R. Butler,
2
2
NiSO
4
·6H
2
O and Ni(CH
3
COO)
2
·4H
2
O complexes, under our
C. G. Frederick and J. L. Gillison, Phys. Rev. Lett., 1968, 21,
reaction conditions. It can be pointed out that the existence of
Ni and SO4 ions and adsorbed water molecules, thereby 16 H. M. Mulmudi, S. K. Batabyal, M. Rao, R. R. Pranhakar,
617.
2
+
2−
create a protective layer around the NiS
has been assessed by EDS, FTIR and Raman spectroscopy, in
2
nanostructure, which
N. Mathews, Y. M. Lam and S. G. Mhaisalkar, Phys. Chem.
Chem. Phys., 2011, 13, 19307.
the current study, playing a crucial role in the chemical and 17 S. T. Oyama, J. Catal., 2003, 216, 343.
magnetic properties of the NiS nanostructure. A corollary to 18 R. S. Mane and C. D. Lokhande, Mater. Chem. Phys., 2000,
this rule is that the saturation magnetization (M ) and rema- 65, 1.
nent magnetization (M ) of the as-prepared NiS nanostructure 19 S. Leitz, G. Hodes, R. Tenne and J. Manassen, Nature, 1987,
2
s
r
2
−
1
−1
were found to be 0.292 emu g and 0.025 emu g , respecti-
vely, when compared to bulk NiS and NiS nanostructures 20 P. A. Vigato and S. Tamburrini, Coord. Chem. Rev., 2004,
without any protective layer, resulted in lower values of M and 248, 1717.
. Additionally, it was interesting that a time increment 21 D. A. Atwood, Coord. Chem. Rev., 1997, 165, 267.
higher than 15 h did not structurally and morphologically 22 W. H. Leung, E. Y. Y. Chan, E. K. F. Chow, I. D. Williams
affect the nanostructure. On the basis of these calculations, and S. M. Peng, J. Chem. Soc., Dalton Trans., 1996, 1229.
the choice of the Ni(II)-Salen complex and Na as starting 23 D. A. Atwood and M. J. Harvey, Chem. Rev., 2001, 101, 37.
materials is critical for preparing the target product and the 24 M. Palucki, G. J. Mc Cormick and E. N. Jacobsen, Tetra-
synthetic strategy might lead the way for the preparation of hedron Lett., 1995, 36, 5457.
other inorganic nanomaterials having different properties and 25 T. Yamada, K. Imagawa, T. Nagata and T. Mukaiyama, Bull.
morphologies, by using such precursors. Chem. Soc. Jpn., 1994, 67, 2248.
The authors are thankful to the University of Kashan for 26 W. Adam, J. Jeco, A. Levai, C. Nemes, T. Patonay and
326, 863.
2
2
s
M
r
2 2 3
S O
supporting this work by grant no. 159183/20.
P. Sebok, Tetrahedron Lett., 1995, 36, 3669.
27 B. Ortiz and S. M. Park, Bull. Korean Chem. Soc., 2000, 21,
405.
28 K. Yamamoto, K. Oyaizu and E. Tsuchida, J. Am. Chem.
Soc., 1996, 188, 12665.
Notes and references
1
Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, 29 S. L. Barnholtz, J. D. Lydon, G. Huang, M. Venkatesh,
B. Gates, Y. D. Yin, F. Kim and Y. Q. Yan, Adv. Mater., 2003,
25, 353.
C. L. Barnes, A. R. Ketring and S. S. Jurisson, Inorg. Chem.,
2001, 40, 972.
1
2
3
J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 1999, 30 L. F. Lindoy, W. E. Moody and D. Taylor, Inorg. Chem.,
2, 435. 1977, 16, 1962.
S. Nagaveena and C. K. Mahadevan, J. Alloys Compd., 2014, 31 M. Sonmez, M. R. Bayram and M. Celebi, J. Coord. Chem.,
82, 447. 2009, 62, 2728.
3
5
16752 | Dalton Trans., 2014, 43, 16745–16753
This journal is © The Royal Society of Chemistry 2014