Paper
RSC Advances
interface (CPE). 49The impedance parameters could be matched
by Zview soware. The Rct of the NiS2, 20%-NiS2/GO, NiSe2 and
3%-NiSe2/rGO electrodes are 0.29 U, 0.11 U, 0.66 U, 0.22 U,
respectively. The 20%-NiS2/GO and 3%-NiSe2/rGO electrodes
J. P. Hong, H. S. Shin, S. N. Cha, J. I. Sohn and J. M. Kim,
Nano Energy, 2017, 37, 15–23.
9 X. Li, S. Y. Lin, M. Zhang, G. Jiang and H. Gao, Nano, 2016,
11, 1650050.
with relatively lower Rct may result from the introduction of 10 X. Chen, R. Paul and L. Dai, Natl. Sci. Rev., 2017, 4, 453–489.
carbon material. EIS experiments show that 20%-NiS2/GO and 11 Y. Li, X. Han, T. Yi, Y. He and X. Li, J. Energy Chem., 2018, 31,
3%-NiSe2/rGO have lower charge transfer resistance than NiS2
and NiSe2.
54–78.
12 J. Liu, S. Liu, S. Zhuang, X. Wang and F. Tu, Ionics, 2013, 19,
1255–1261.
13 D. Yan, H. Zhang, S. Li, G. Zhu, Z. Wang, H. Xu and A. Yu, J.
Alloys Compd., 2014, 607, 245–250.
4 Conclusion
In summary, we have successfully synthesized a carbon-loaded 14 G. C. Li, P. F. Liu, R. Liu, M. Liu, K. Tao, S. R. Zhu, M. K. Wu,
material (NiS2/GO) by introducing graphite oxide with different F. Y. Yi and L. Han, Dalton Trans., 2016, 45, 13311–13316.
mass fractions through a L-cysteine-assisted facile hydro- 15 J. Yang, M. Cho and Y. Lee, Sens. Actuators, B, 2016, 222, 674–
thermal method. Meanwhile, during the transformation of NiS2 681.
to NiSe2, graphene oxide was introduced to form NiSe2 16 M. S. Kolathodi, M. Palei and T. S. Natarajan, J. Mater. Chem.
composite. The specic capacitance was increased with the A, 2015, 3, 7513–7522.
addition of graphene oxide and the rate performance were 17 H. Pang, Q. Lu, Y. Zhang, Y. Li and F. Gao, Nanoscale, 2010,
improved. The carbon-loaded layer effectively enhanced the 2, 920–922.
electrical conductivity. Compared with pure NiS2, the specic 18 R. Sun, S. Liu, Q. Wei, J. Sheng, S. Zhu, Q. An and L. Mai,
capacitance of NiS2/GO raised from 384 F gꢁ1 to 1020 F gꢁ1 at
Small, 2017, 13, 1701744.
the current density of 1 A gꢁ1. And for NiSe2, the specic 19 A. Mondal, S. Maiti, S. Mahanty and A. B. Panda, J. Mater.
capacitance of NiSe2/rGO raised from 333 F gꢁ1 to 722 F gꢁ1 at
Chem. A, 2017, 5, 16854–16864.
the current density of 1 A gꢁ1. This work demonstrates that the 20 X. Li, J. Shen, N. Li and M. Ye, Mater. Lett., 2015, 139, 81–85.
introduction of graphite oxide and carbon-loaded layer was an 21 M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv and Q. Zhang, J.
effective method to improve the overall electrochemical prop-
Hazard. Mater., 2012, 211, 317–331.
erties of nickel chalcogenide.
22 C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du and
H. Pang, Dalton Trans., 2015, 44, 17278–17285.
23 J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao, H. Dou, Y. Xia
and X. Zhang, Natl. Sci. Rev., 2017, 4, 71–90.
Conflicts of interest
There are no conicts to declare.
24 X. Li, J. Shen, N. Li and M. Ye, Mater. Lett., 2015, 139, 81–85.
25 F. Cai, R. Sun, Y. Kang, H. Chen, M. Chen and Q. Li, RSC
Adv., 2015, 5, 23073–23079.
26 R. Agrawal, C. Chen, Y. Hao, Y. Song and C. Wang, Graphene-
Based Energy Devices, Wiley-VCH, Weinheim, 2015.
Acknowledgements
This project was nancially supported by the National Natural
Science Foundation of China (No. 51672040 and 51672013), 27 L. Wang, X. Wang, X. Xiao, F. Xu, Y. Sun and Z. Li,
Science and Technology Research Projects of the Education Electrochim. Acta, 2013, 111, 937–945.
Department of Jilin Province (JJKH20180429KJ), Jilin City 28 H. Zhang, X. Tian, C. Wang, H. Luo, J. Hu, Y. Shen and A. Xie,
Science and Technology Bureau (201750228).
Appl. Surf. Sci., 2014, 314, 228–232.
29 I. Oh, M. Kim and J. Kim, Appl. Surf. Sci., 2015, 328, 222–228.
30 Q. Wang, Y. Zou, C. Xiang, H. Chu, H. Zhang, F. Xu, L. Sun
and C. Tang, Ceram. Int., 2016, 42, 12129–12135.
Notes and references
1 J. Miot, N. Recham, D. Larcher, F. Guyot, J. Brest and 31 Q. Chen, W. Chen, J. Ye, Z. Wang and J. Y. Lee, J. Power
J. M. Tarascon, Energy Environ. Sci., 2014, 7, 451–460.
Sources, 2015, 294, 51–58.
2 J. Wang, Z. Liu, Y. Zheng, L. Cui, W. Yang and J. Liu, J. Mater. 32 X. Xie, Z. Ao, D. Su, J. Zhang and G. Wang, Adv. Funct. Mater.,
Chem. A, 2017, 5, 22913–22932. 2015, 25, 1393–1403.
3 R. German, A. Sari, P. Venet, M. Ayadi, O. Briat and 33 C. A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh,
J. M. Vinassa, Microelectron. Reliab., 2014, 54, 1813–1817.
4 Z. Luo, C. Liu and S. Fan, J. Mater. Chem. A, 2019, 7, 3642–
3647.
5 C. Yang, D. Li, H. Gao, Q. Liu, J. Zhu, F. Wang and M. Jiang,
ACS Appl. Energy Mater., 2020, 3, 2674–2681.
6 T. Peng, H. Yi, P. Sun, Y. Jing, R. Wang, H. Wang and
X. Wang, J. Mater. Chem. A, 2016, 4, 8888–8897.
7 Y. Huang, J. Liang and Y. Chen, Small, 2012, 8, 1805–1834.
S. Ghosh, S. R. Sitaraman and A. N. Grace, Int. J. Nanosci.,
2018, 17, 1760021.
34 J. Shen, R. Cheng, Y. Luo, Y. Chen, X. Chen, Z. Sun and
S. Huang, J. Solid State Electrochem., 2015, 19, 1045–1052.
35 J. Zhu, Y. Li, S. Kang, X. L. Wei and P. K. Shen, J. Mater. Chem.
A, 2014, 2, 3142–3147.
36 W. Ma, Y. Guo, X. Liu, D. Zhang, T. Liu, R. Ma, K. Zhou and
G. Qiu, Chem.–Eur. J., 2013, 19, 15467–15471.
8 Y. W. Lee, B. S. Kim, J. Hong, H. Choi, H. S. Jang, B. Hou, 37 M. Lu, X. P. Yuan, X. H. Guan and G. S. Wang, J. Mater. Chem.
S. Pak, J. Lee, S. H. Lee, S. M. Morris, D. Whang,
A, 2017, 5, 3621–3627.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 11786–11792 | 11791