Inorganic Chemistry
ARTICLE
exchange of Naþ ions (as compared to Liþ ions) for Agþ explains
the existence of this OD4-(Li/Ag)CoO2 phase, which is the
second example of a mixed ordered (A/A0)CoO2 packing after
the OP4-(Li/Na)CoO2 and the first case of a intergrowth of rock
salt and delafossite layers. The space group is P63/mmc and the
cell parameters are ahex. = 2.848(3) Å and chex. = 21.607(7) Å, in
perfect agreement with simulation studies. Tuning different
thermodynamic and kinetic parameters enables one to impede
the D4 delafossite formation, but within our experimental setup
we could not avoid any Liþ/Agþ ionic exchange; the best result is
a mixture of ∼80% of the OD4 phase and ∼20% of the D4 phase.
As other ionic exchange products, the OD4-(Li/Ag)CoO2 phase
is not stable and tends to decompose above 400ꢀ450 °C, giving
O3-LiCoO2, Co3O4, and metallic silver. Electrical measurements
performed on a nonsintered, compacted pellet of a 4:1 mixture of
OD4 and D4 reveal a semiconductor behavior.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: pollet@icmcb-bordeaux.cnrs.fr.
’ ACKNOWLEDGMENT
The authors want to thank J. Villot, S. Fourcade, C. Denage, L.
Etienne, E. Lebraud, and S. Pechev for technical assistance and
ANR OCTE for financial support. CEA is also thanked for a
scholarship to R.B.
’ REFERENCES
(1) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. Mater.
Res. Bull. 1980, 15 (6), 783.
(2) Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10 (1),
74.
Figure 5. Evolution vs temperature of the resistivity (triangles) and of
the Seebeck coefficient (circles) measured on nonsintered, compacted
pellets of the 4:1 mixture of OD4 and D4 phases (white marks) and of a
pure D4-AgCoO2 (black marks, from ref 29). (Inset) Evidence, with the
dashed line, of the variable range hopping conduction behavior in the
∼50ꢀ300 K temperature range.
(3) Terasaki, I.; Sasago, Y.; Uchinokura, K. Phys. Rev. B Condens.
Matter Mater. Phys. 1997, 56 (20), R12685.
(4) Lee, M.; Viciu, L.; Li, L.; Wang, Y.; Foo, M.; Watauchi, S.; Pascal,
R., Jr.; Cava, R.; Ong, N. Nat. Mater. 2006, 5 (7), 537.
(5) Lee, M.; Viciu, L.; Li, L.; Wang, Y.; Foo, M.; Watauchi, S.; Pascal,
R., Jr.; Cava, R.; Ong, N. Phys. B Condens. Matter 2008, 403 (5ꢀ9), 1564.
(6) Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.;
Dilanian, R.; Sasaki, T. Nature 2003, 422 (6927), 53.
(7) Schaak, R.; Klimczuk, T.; Foo, M.; Cava, R. Nature 2003, 424
(6948), 527.
layers is out of the scope of the present paper in view of the ex-
perimental limitations above-mentioned. In the second hypoth-
esis, the thermopower value at room temperature would be far
below the asymptotic value expected from the Heikes formula
(∼260 μV Kꢀ1) for the given sample composition and assuming
the usual electronic configuration for cobalt(III) and -(IV)
located in the relevant site symmetry.40
As shown in the inset of Figure 5 and as already observed for
pure D4-AgCoO2 delafossite,29 the resistivity data obey a Mott’s
law of the form F = A exp[(T0/T)1/4].41,42 However, below ca.
50 K, Mott’s law is no longer obeyed, and, below 15 K, the elec-
trical resistivity no longer decreases as the temperature is further
decreased. Such a behavior is rarely observed in experimental
studies of semiconducting oxides, but it was predicted as a pos-
sible transport mechanism at low temperature (T < ΘD/2, where
ΘD is the Debye temperature) when the zero point energy 1/2hν
associated with quantum fluctuations can take the place of thermal
vibrations.43
(8) Huang, Q.; Foo, M.; Lynn, J.; Zandbergen, H.; Lawes, G.; Wang,
Y.; Toby, B.; Ramirez, A.; Ong, N.; Cava, R. J. Phys.: Condens. Matter
2004, 16 (32), 5803.
(9) Levasseur, S.; Mꢀenꢀetrier, M.; Suard, E.; Delmas, C. Solid State
Ionics 2000, 128 (1ꢀ4), 11.
(10) Delmas, C.; Braconnier, J.-J.; Hagenmuller, P. Mater. Res. Bull.
1982, 17 (1), 117.
(11) Carlier, D.; Saadoune, I.; Croguennec, L.; Mꢀenꢀetrier, M.; Suard,
E.; Delmas, C. Solid State Ionics 2001, 144 (3ꢀ4), 263.
(12) Berthelot, R.; Carlier, D.; Pollet, M.; Doumerc, J.-P.; Delmas, C.
Electrochem. Solid-State Lett. 2009, 12 (11), A207.
(13) Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid
State Chem. 1973, 6 (4), 532.
(14) Viciu, L.; Bos, J.; Zandbergen, H.; Huang, Q.; Foo, M.; Ishiwata,
S.; Ramirez, A.; Lee, M.; Ong, N.; Cava, R. Phys. Rev. B Condens. Matter
Mater. Phys. 2006, 73 (17), 174104.
(15) Huang, Q.; Foo, M.; Pascal, R., Jr.; Lynn, J.; Toby, B.; He, T.;
Zandbergen, H.; Cava, R. Phys. Rev. B Condens. Matter Mater. Phys. 2004,
70 (18), 184110.
(16) Blangero, M.; Decourt, R.; Carlier, D.; Ceder, G.; Pollet, M.;
Doumerc, J.-P.; Darriet, J.; Delmas, C. Inorg. Chem. 2005, 44 (25), 9299.
5. CONCLUSION
A new lamellar phase alternating rock salt and delafossite
type layers is evidenced as an intermediate step during the global
OP4-(Li/Na)CoO2 f D4-AgCoO2 ionic exchange. The easier
6654
dx.doi.org/10.1021/ic200534x |Inorg. Chem. 2011, 50, 6649–6655