Enantioselective Silylcyanation of Aldehydes and Ketones by a Titanium Catalyst
COMMUNICATIONS
hedron: Asymmetry 2003, 14, 147–176; c) J. M. Brunel,
I. P. Holmes, Angew. Chem. 2004, 116, 2810–2837;
Angew. Chem. Int. Ed. 2004, 43, 2752–2778; d) N. H.
Khan, R. I. Kureshy, S. H. R. Abdi, S. Agrawal, R. V.
Jasra, Coord. Chem. Rev. 2008, 252, 593–623; e) M.
North, D. L. Usanov, C. Young, Chem. Rev. 2008, 108
5146–5226.
with good enantiomeric excess (entries 2–4). The sub-
stituent on the benzene ring did not exert a significant
influence on the enantioselectivity of the reaction. In
the case of aliphatic aldehydes, the corresponding cya-
nohydrin silyl ethers were obtained in high yield with
high enantioselectivities. The reaction of heptanal was
completed in 20 min in the presence of 0.2 mol% of
catalyst (S)-3 to give the desired product with 86% ee
(entry 5). Excellent results were obtained for secon-
dary aldehydes such as 2-ethylbutyraldehyde and cy-
clohexanecarbaldehyde (entries 6 and 7).
The catalyst system was also effective for the silyl-
cyanation of aromatic and aliphatic ketones; aceto-
phenone and cyclohexylmethylketone afforded the
corresponding cyanated products in 24 h with 88% ee
and 90% ee, respectively (entries 8 and 9). The cata-
lyst system was applicable for the highly enantioselec-
tive silylcyanation of a wide range of carbonyl com-
pounds.
In summary, we have demonstrated that partially
hydrolyzed titanium alkoxides are a promising titani-
um source for the preparation of an efficient catalyst
for asymmetric synthesis. The reaction in the presence
of catalyst (S)-3 proceeded smoothly to afford prod-
ucts with high enantioselectivity with high efficiency
at room temperature. A detailed study of the titanium
catalyst structure and the scope and limitations of the
substrates is now underway.
[2] a) M. Hayashi, Y. Miyamoto, T. Inoue, N. Oguni, J.
Chem. Soc. Chem. Commun. 1991, 1752–1753; b) M.
Hayashi, Y. Miyamoto, T. Inoue, N. Oguni, J. Org.
Chem. 1993, 58, 1515–1522; c) M. Hayashi, T. Inoue,
Y. Miyamoto, N. Oguni, Tetrahedron 1994, 50, 4385–
4398.
[3] a) A. Abiko, G. q. Wang, J. Org. Chem. 1996, 61, 2264–
2265; b) W. B. Yang, J. M. Fang, J. Org. Chem. 1998,
63, 1356–1359; c) C. D. Hwang, D. R. Hwang, B. J.
Uang, J. Org. Chem. 1998, 63, 6762–6763; d) Y. Hama-
shima, D. Sawada, M. Kanai, M. Shibasaki, J. Am.
Chem. Soc. 1999, 121, 2641–2642; e) Y. N. Belokon, S.
Caveda-Cepas, B. Green, N. S. Ikonnikov, V. N. Khrus-
talev, V. S. Larichev, M. A. Moscalenko, M. North, C.
Orizu, V. I. Tararov, M. Tasinazzo, G. I. Timofeeva,
L. V. Yashkina, J. Am. Chem. Soc. 1999, 121, 3968–
3973; f) L. Z. Flores-Lopez, M. Parra-Hake, R. Soma-
nathan, P. J. Walsh, Organometallics 2000, 19, 2153–
2160; g) Y. N. Belokon, M. North, T. Parsons, Org. Lett.
2000, 2, 1617–1619; h) J. S. You, H. M. Gau, M. C. K.
Choi, Chem. Commun. 2000, 1963–1964; i) I. P.
Holmes, H. B. Kagan, Tetrahedron Lett. 2000, 41, 7453–
7460; j) I. P. Holmes, H. B. Kagan, Tetrahedron Lett.
2000, 41, 7457–7460; k) S. Liang, X. R. Bu, J. Org.
Chem. 2002, 67, 2702–2704; l) J. Casas, C. Najera, J. M.
Sansano, J. M. Saa, Org. Lett. 2002, 4, 2589–2592;
m) Y. N. Belokon, P. Carta, A. V. Gutnov, V. Maleev,
M. A. Moskalenko, L. V. Yashkina, N. S. Ikonnikov,
N. V. Voskoboev , V. N. Khrustalev, M. North, Helv.
Chim. Acta 2002, 85, 3301–3312; n) S. Lundgren, S.
Lutsenko, C. Jonsson, C. Moberg, Org. Lett. 2003, 5,
3663–3665; o) Y. Li, B. He, B. Qin, X. Feng, G. Zhang,
J. Org. Chem. 2004, 69, 7910–7913; p) D. H. Ryu, E. J.
Corey, J. Am. Chem. Soc. 2004, 126, 8106–8107;
q) H. C. Aspinall, J. F. Bickley, N. Greeves, P. M. Smith,
Organometallics 2005, 24, 3458–3467; r) M. Hatano, T.
Ikeno, T. Miyamoto, K. Ishihara, J. Am. Chem. Soc.
2005, 127, 10776–10777; s) Y. N. Belokon, V. I. Maleev,
M. North, D. L. Usanov, Chem. Commun. 2006, 4614–
4616; t) B. Zeng, X. Zhou, X. Liu, X. Feng, Tetrahe-
dron 2007, 63, 5129–5136; u) F. Yang, Siping Wei, C.
Chen, P. Xi, L. Yang, J. Lan, H. Gau, J. You, Chem.
Eur. J. 2008, 14, 2223–2231; v) Z. Zeng, G. Zhao, Z.
Zhou, C. Tang, Eur. J. Org. Chem. 2008, 1615–1618;
w) N. Kurono, K. Arai, M. Uemura, T. Ohkuma,
Angew. Chem. 2008, 120, 6745–6748; Angew. Chem.
Int. Ed. 2008, 47, 6643–6646.
Experimental Section
Typical Experimental Procedure
An optically active Schiff-base ligand (S)-1 was synthesized
according to the reported method.[2b] Ti
ACHTNUTRGNE(NUG O-n-Bu)4 was hy-
drolyzed with wet dichloromethane containing 1.0 equiv. of
water per titanium at room temperature. A solution of cata-
lyst (S)-3 was prepared from a solution of ligand (S)-1 and
the partially hydrolyzed titanium n-butoxide [the molar
ratio of ligand (S)-1/Ti=1/1]. Asymmetric silylcyanation
was carried out using 0.2–1.0 mol% of the catalyst (S)-3 and
TMSCN (1.5 equiv. to substrates) in anhydrous dichlorome-
thane at 208C.
Acknowledgements
We would like to thank Prof. Tohru Yamada of Keio Univer-
sity for helpful discussions. We are also grateful to Mr. Satoru
Miyazoe, Mr. Masanori Iwazumi, and Dr. Terunori Fujita.
[4] a) Y. N. Belokon, B. Green, N. S. Ikonnikov, M. North,
V. I. Tararov, Tetrahedron Lett. 1999, 40, 8147–8150;
b) Y. Hamashima, M. Kanai, M. Shibasaki, J. Am.
Chem. Soc. 2000, 122, 7412–7413; c) Y. N. Belokon, B.
Green, N. S. Ikonnikov, M. North, T. Parsonsa, V. I.
Tararov, Tetrahedron 2001, 57, 771–779; d) K. Yabu, S.
Masumoto, S. Yamasaki, Y. Hamashima, M. Kanai, W.
Du, D. P. Curran, M. Shibasaki, J. Am. Chem. Soc.
References
[1] For recent reviews on enantioselective synthesis of cya-
nohydrins and their derivatives, see: a) R. J. H. Grego-
ry, Chem. Rev. 1999, 99, 3649–3682; b) M. North, Tetra-
Adv. Synth. Catal. 2009, 351, 1495 – 1498
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1497