752
A. Jain et al. / Journal of Alloys and Compounds 491 (2010) 747–752
providing TiB2 powder for this study. Authors are also grateful to
Dr. K. Nagarajan, Chemistry Group, Indira Gandhi Centre for Atomic
Research, for providing support in the calorimetric measurements
on the TiB2 sample.
References
[1] R. Telle, G. Petzow, Mater. Sci. Eng. A 105–106 (1988) 97–104.
[2] U. Demircan, B. Derin, O. Yucel, Mater. Res. Bull. 42 (2007) 312–318.
[3] T.S.R.Ch. Murthy, B. Basu, A. Srivastava, R. Balasubramaniam, A.K. Suri, J. Eur.
Ceram. Soc. 26 (2006) 187–192.
[4] C. Morz, D. Titanium, Am. Ceram. Soc. Bull. 74 (1995) 158–159.
[5] J.J. Gamgler, J. Am. Ceram. Soc. 33 (1950) 367–374.
[6] B. Basu, G.B. Raju, A.K. Suri, Int. Mater. Rev. 51 (2006) 352–372.
[7] J.J. Fang, Z.X. Li, Y.W. Shi, Appl. Surf. Sci. 254 (2008) 3849–3858.
[8] T.J. Yurick, K.E. Spear, Thermodynamics of TiB2 from Ti–B–N studies, IAEA-SM-
236/53, 1980, pp. 73–90.
[9] E.F. Westrum Jr., G.A. Clay, J. Chem. Thermodyn. 10 (1978) 629–636.
[10] C. Subramanian, T.S.R.Ch. Murthy, A.K. Suri, Int. J. Refract. Met. Hard Mater. 25
(2007) 345–350.
[11] T.S.R.Ch. Murthy, C. Subramanian, R.K. Fotedar, M.R. Gonal, P. Sengupta, S.
Kumar, A.K. Suri, Int. J. Refract. Met. Hard Mater. 27 (2009) 629–636.
[12] D. Vallauri, I.C. Atías Adrián, A. Chrysanthou, J. Eur. Ceram. Soc. 28 (2008)
1697–1713.
[13] C.L. Yeh, Y.L. Chen, J. Alloys Compd. 463 (2008) 373–377.
[14] B. Basu, J. Vleugels, O. Van der Biest, J. Eur. Ceram. Soc. 25 (2005) 3629–
[15] L.Z. Pei, H.N. Xiao, J. Mater. Process. Technol. 209 (2009) 2122–2127.
[16] H. Itoh, K. Sugiura, H. Iwahara, J. Alloys Compd. 232 (1996) 186–191.
[17] C.L. Yeh, G.S. Teng, J. Alloys Compd. 424 (2006) 152–158.
[18] C.L. Yeh, S.H. Su, J. Alloys Compd. 407 (2006) 150–156.
[19] U. Fastner, T. Steck, A. Pascual, G. Fafilek, G.E. Nauer, J. Alloys Compd. 452 (2008)
32–35.
[20] L. Zhan, P. Shen, S. Jin, Q. Jiang, J. Alloys Compd. 480 (2009) 315–320.
[21] Z.I. Zaki, E.M.M. Ewais, M.M. Rashad, J. Alloys Compd. 467 (2009) 288–292.
[22] A. Calka, D. Oleszak, J. Alloys Compd. 440 (2007) 346–348.
[23] G.E. Grechnev, A.V. Fedorchenko, A.V. Logosha, A.S. Panfilov, I.V. Svechkarev,
V.B. Filippov, A.B. Lyashchenko, A.V. Evdokimova, J. Alloys Compd. 481 (2009)
75–80.
Fig. 7. Third-law analysis of the experimental (EMF) data.
energy function (ꢀfef):
Ti(s) + 2B(s) → TiB2(s)
(14)
The values of ꢀrG◦ and ꢀrG(◦9) were computed for each exper-
(4)
imental temperature using the EMF data listed in Tables 1 and 2.
These free energy data were combined with the corresponding val-
ues of ꢀfG◦ ꢀNiOꢁ or (ꢀfG◦ ꢀFeOꢁ) and ꢀfG◦ ꢀTiO2ꢁ in order to derive
ꢀfG◦ ꢀTiB2ꢁ from cells I and II. The ꢀf H2◦98 ꢀTiB2ꢁ value pertaining
to each measurement was computed by using Eq. (15):
ꢀf H2◦98K(TiB2) = ꢀf G◦(TiB2) − T × ꢀfef
(15)
[24] Y. Han, Y. Dai, D. Shu, J. Wang, B. Sun, J. Alloys Compd. 438 (2007) 327–331.
[25] V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, T.Ya. Velikanova, J. Alloys
Compd. 448 (2008) 185–194.
[26] L. Brewer, H. Haraldsen, J. Electrochem. Soc. 102 (1955) 399–406.
[27] G.V. Samsonov, J. Appl. Chem. (USSR) 28 (1955) 975.
[28] W.S. Williams, J. Phys. Chem. 65 (1961) 2213–2216.
[29] C.E. Lowell, W.S. Williams, Rev. Sci. Instrum. 32 (1961) 1120–1123.
[30] V.A. Epel’baum, M.L. Starostina, Bor. Trudy Konf. Khim., Bora i Ego Soedinenii.
(1958) 97.
[31] E.J. Huber Jr., J. Chem. Eng. Data 11 (1966) 430–431.
[32] V.V. Akhachinskij, N.A. Chirin, Proceeding of Symposium on Thermodynamics
of Nuclear Materials, Vol. 2, IAEA, Vienna, 1975, pp. 467–472.
[33] P.O. Schissel, W.S. Williams, Bull. Am. Phys. Soc. Ser. II 4 (3) (1959).
[34] P.O. Schissel, O.C. Trulson, J. Phys. Chem. 66 (1962) 1492–1496.
[35] G.M. Kibler, T.F. Lyon, M.J. Linevsky, V.J. Desantis, Technical Report No. WADD-
TR-60-646. Part III, vol. 2, General Electric Co., Evandale, OH, 1964.
[36] V.V. Fesenko, A.S. Bolgar, Sov. Powder Metall. Met. Ceram. 1 (1963) 11–15.
[37] M.W. Chase Jr., C.A. Davis, J. Downey Jr., D.J. Frurip, R.A. Mcdonald, A.N. Syveud,
JANAF Thermochemical Tables, III ed., 1985, pp. 274–275.
[38] O. Knacke, O. Kubaschewski, K. Hesselmann (Eds.), Thermochemical Properties
of Inorganic Substances, second ed., Springer–Verlag, Germany, 1991.
[39] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of
the Thermodynamic Properties of Binary Alloys, American Society for Metals,
Metals Park, OH, 1973, pp. 516–521.
The ꢀfef values interpolated at the actual temperature at
which the EMF measurement was carried out were combined with
the computed values of ꢀfG◦ ꢀTiB2ꢁ in order to derive ꢀf H2◦98
ꢀTiB2ꢁ. A third-law plot of ꢀf H2◦98 ꢀTiB2ꢁ (Fig. 7) indicates that our
experimental measurements do not suffer from significant tem-
perature dependent errors. The values of −322 1.2 kJ mol−1 and
−323.3 2.1 kJ mol−1 were derived for ꢀf H2◦98 ꢀTiB2ꢁ from cells
I and II, respectively. The enthalpy of formation of TiB2 at 298 K
obtained from our measurements are in good agreement with the
data reported in the standard reference [38] as well as with those
reported by most of the investigators (Table 4).
4. Conclusions
The standard free energy of formation of TiB2 was determined
for the first time by using an EMF method that employed yttria
doped thoria as the oxide solid electrolyte. Enthalpy increments
of TiB2 were measured by using inverse drop calorimetry over the
temperature range 583–1769 K. By using the measured values of
the enthalpy increments, other thermodynamic functions viz., heat
capacity, entropy and the free energy function have been derived
in the temperature range 298–1800 K. Two independent EMF mea-
surements (cell I and cell II) carried out in this study yielded ꢀf H2◦98
values of −322 1.2 kJ mol−1 and −323.3 2.1 kJ mol−1, respec-
tively. These values agree with those cited in the literature as
well.
[40] A.M. Azad, O.M. Sreedharan, J. Appl. Electrochem. 17 (1987) 949–955.
[41] R. Pankajavalli, K. Ananthasivan, S. Anthonysamy, P.R. Vasudeva Rao, J. Nucl.
Mater. 336 (2005) 177–184.
[42] Synthetic Sapphire Al2O3, Certificate of Standard Reference Materials, SRM 720,
National Bureau of Standards, U.S. Department of Commerce, Washington, DC,
USA, 1982.
[43] R. Kandan, R. Babu, P. Manikandan, R. Venkata Krishnan, K. Nagarajan, J. Nucl.
Mater. 384 (2009) 231–235.
[44] J.L. Murray, P.K. Liao, K.E. Spear, in: J.L. Murray (Ed.), Phase Diagrams of Binary
Titanium Alloys, ASM International, Materials Park, OH, 1987, pp. 33–38.
[45] C. Batzner, ‘System B-Ti’, COST507, in: I. Ansara, A.T. Disdale, M.H. Rand (Eds.),
Thermochemical Database for Light Metal Alloys, European Commission, Lux-
embourg, 1998.
[46] X. Ma, C. Li, Z. Du, W. Zhang, J. Alloys Compd. 370 (2004) 149–158.
[47] O.M. Sreedharan, C. Mallika, A Compilation of Gibbs Energy Data for 40 Metal
Oxide Buffers, Report RRC – 69, 1984, pp. 1–34.
Acknowledgements
[48] O. Kubaschewskii, High Temp. High Pressure 4 (1972) 1–5.
[49] L. Guzman, M. Elena, A. Miotello, P.M. Ossi, D.C. Kothari, Vacuum 46 (1995)
951–954.
The authors wish to thank Mr. C. Subramanian, Materials Pro-
cessing Division, Bhabha Atomic Research Centre, Mumbai for