Amirsardari et al.
The Effect of Starting Precursors on Size and Shape Modification of ZrB2 Ceramic Nanoparticles
uniformity compared with other literatures. According to
SEM images, it was observed that ligand plays a key role
in controlling the growth of ZrB2 nanostructures as well as
providing an in depth understanding of Zr(IV) complexes
and how ligand work.
Acknowledgments: The authors are grateful to the
Space Transportation Research Institute of Iran for finan-
cial support.
Figure 7. TEM micrographs of (a) sample A and (b) sample B.
are nearly spherical (Fig. 7(a)), and the average particle
size is 30 nm. A variable distribution of particle size is
clearly observed in Figure 7(b), showing the different form
of nanoscale particles in sample B. It is interesting to note
that Schiff-base compounds play the role of a stabilizer of
Zr(IV) ion against hydrolysis. The rate-determining step
for the formation of ZrB2 can be due to the inhibition
of the nucleation or the growth of the generated parti-
cles by the adsorption of ligand thereon.23 Accordingly,
the particle-size distribution of ZrB2 indicated that the
average diameter of nanoparticles counted from the TEM
image is about 30–50 nm. Such investigations can increase
our knowledge on synthesis of refractory and hard mate-
rials, and offer a guide for controlling the structure of the
products.
References and Notes
1. Y. Xie, T. H. Sanders Jr., and R. F. Speyerw, J. Am. Ceram. Soc.
91, 1469 (2008).
2. H. Wang, X. Chen, B. Gao, J. Wang, Y. Wang, S. Chen, and Y. Gou,
Appl. Organometal. Chem. 27, 79 (2013).
3. S. E. Kravchenko, V. I. Torbov, and S. P. Shilkin, Russ. J. Inorg.
Chem. 56, 506 (2011).
4. S. Guo, C. Hu, and Y. Kagawa, J. Am. Ceram. Soc. 94, 3643 (2011).
5. L. S. Walker and E. L. Corral, J. Am. Ceram. Soc. 97, 399 (2014).
6. D. H. Chen and X. R. He, Mater. Res. Bull. 36, 1369 (2001).
7. Y. Yan, Z. Huang, X. Liu, and D. Jiang, J. Sol–Gel Sci. Technol.
44, 81 (2007).
8. P. Sahu and B. L. V. Prasad, Nanoscale 5, 1768 (2013).
9. R. Li, Y. Zhang, H. Lou, J. Li, and Z. Feng, J. Sol–Gel Sci. Technol.
58, 580 (2011).
10. H. Ji, M. Yang, M. Li, G. Ji, H. Fan, and X. Sun, Adv. Powder
Technol. 25, 910 (2014).
11. J. Welby, L. N. Rusere, J. M. Tanski, and L. A. Tyler, Inorg. Chim.
Acta 362, 1405 (2009).
12. L. K. Sannegowda, K. R. Venugopala Reddy, and K. H. Shivaprasad,
RSC Adv. 4, 11367 (2014).
13. R. B. Grubbs, Polym. Rev. 47, 197 (2007).
Thus, Zr(IV)(sal) complex is selected as desired pre-
cursor after the observation of microstructure of synthe-
sized ZrB2 nanopowders. The slower growth rate may be
Delivered by Publishing Technology to: Deakin University Library
IP: 201.20.127.180 On: Sat, 02 Jan 2016 09:20:24
due to the versatile structure of the salpn and interac-
Copyright: American S1c4i.enMti.fRic. MPauubrylias, hSe. Jr.sJ. Titinchi, S. Chand, and I. M. Mishra, J. Mol.
tion between the zirconium ion and nitrogen atoms of
Catal. A: Chem. 180, 201 (2002).
the amine groups.24ꢁ25 Anyway, it can be obvious that the
observed reaction pathway depends on the chemical func-
tionality of the incoming compounds.
15. S. J. Dzugan and V. L. Goedken, Inorg. Chem. 25, 2858 (1986).
16. H. Qiu, W. Guo, J. Zou, and G. Zhang, Powder Technol. 217, 462
(2012).
17. Y. Yan, Z. Huang, S. Dong, and D. Jiang, J. Am. Ceram. Soc.
89, 3585 (2006).
18. M. Salavati-Niasari, B. Shoshtari-Yeganeh, and F. Mohandes, Mater.
Res. Bull. 48, 1745 (2013).
19. D. D. Lee, G. D. Sim, K. Xiao, and J. J. Vlassak, J. Phys. Chem. C
118, 21192 (2014).
4. CONCLUSIONS
Synthesis of ZrB2 nanoparticles by sol–gel process has
proved to be very efficient in controlling the size of the
particles obtained from the ligands derived from sali-
cylaldehyde. In this synthesis, investigations on reaction
mechanisms are necessary for processing optimization to
improve the properties of the products. The zirconium
ion is coordinated through the azomethine (salpn) nitro-
gens and phenolic oxygen atoms that the nitrogen donor
group of salpn ligand leads to the unusual properties of
nanoparticles, which should be taken careful considera-
tion of the metal-salpn complexes. From these results,
we can conclude that Zr(IV)(sal) complex could be used
for controlling smaller size of particles with excellent
20. A. Paul, S. Venugopal, J. G. P. Binner, B. Vaidhyanathan, A. C. J.
Heaton, and P. M. Brown, J. Eur. Ceram. Soc. 33, 423 (2013).
21. D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski,
and L. Chmurzyníski, J. Therm. Anal. Calorim. 104, 731 (2011).
22. R. V. Krishnaraon, M. Z. Alam, D. Kumar Das, and V. V. Bhanu
Prasad, Ceram. Int. 40, 15647 (2014).
23. J. H. Son, S. W. Kim, D. S. Bae, K. S. Han, J. K. Lee, C. Y. Kim,
B. I. Kim, and J. H. Adair, Mater. Sci. Eng. A 498, 2 (2008).
24. M. Salehi, M. Kubicki, G. Dutkiewicz, A. Rezaei, M. Behzad, and
S. Etminani, Russ. J. Coord. Chem. 39, 716 (2013).
25. P. Adaõ, J. Costa Pessoa, R. T. Henriques, M. L. Kuznetsov,
F. Avecilla, M. R. Maurya, U. Kumar, and I. Correia, Inorg. Chem.
48, 3542 (2009).
Received: 15 October 2014. Accepted: 6 February 2015.
J. Nanosci. Nanotechnol. 15, 10017–10021, 2015
10021