10.1002/asia.202000134
Chemistry - An Asian Journal
COMMUNICATION
Que, Jr., B. L. Feringa, Chem. Eur. J. 2000, 6, 2152-2159; c) H. Miyake,
K. Chen, S. J. Lange, L. Que, Jr. Inorg. Chem. 2001, 40, 3534-3538; d) K.
Chen, L. Que, Jr. J. Am. Chem. Soc. 2001, 123, 6317-6337; e) K. Chen,
M. Costas, L. Que, Jr. J. Chem. Soc. Dalton Trans. 2002, 672-679; f) A.
Bassan, M. R. A. Blomberg, P. E. M. Siegbahn, L. Que, Jr. Chem. Eur. J.
2005, 11, 692-705; g) I. Prat, A. Company, V. Postils, X. Ribas, L. Que, Jr.
J. M. Luis, M. Costas, Chem. Eur. J. 2013, 19, 6724-6738;
cis-1b-catalysed oxidation selectively proceeded at the sterically
less-hindered tertiary C–H bond with high chemoselectivity.
Notably, late-stage C–H oxidation of highly complicated
molecules also proceeded in a highly chemo- and site-selective
manner. Based on the mechanistic studies, cis-1b catalyzed the
two-electron oxidation of the C–H bonds. Although further insight
into the mechanism must be obtained through additional kinetic
and control studies, the present research has opened a new way
toward the step-economic synthesis of alcohols.
[7]
[8]
a) M. S. Chen, M. C. White, Science, 2007, 318, 783-787; b) M. S. Chen,
M. C. White, Science, 2010, 327, 566-571; c) T. Nanjo, E. C. de Lucca, Jr.
M. C. White, J. Am. Chem. Soc. 2017, 139, 14586-14591; d) M. C. White,
J. Zhao, J. Am. Chem. Soc. 2018, 140, 13988-14009.
a) L. Gómez, I. Garacia-Bosh, A. Company, J. Benet-Buchholz, A. Polo,
X. Sala, X. Ribas, M. Costas, Angew. Chem. 2009, 121, 5830-5833;
Angew. Chem. Int. Ed. 2009, 48, 5720-5723; b) Q. Zhang, J. D. Gorden,
C. R. Goldsmith, Inorg. Chem. 2013, 52, 13546-13554; c) Y. Hitomi, K.
Arakawa, M. Kodera, Chem. Eur. J. 2013, 19, 14697-14701; d) V. A.
Yazerski, P. Spannring, D. Gatineau, C. H. M. Woerde, S. M. Wieclawska,
M. Lutz, H. Kleijn, R. J. M. Klein Gebbink, Org. Biomo. Chem. 2014, 12,
2062-2070; e) D. Shen, C. Miao, S. Wang, C. Xia, W. Sun, Org. Lett. 2014,
16, 1108-1111; f) G. Olivo, M. Nardi, D. Vidal, A. Barbieri, A. Lapi, L.
Gómez, O. Lanzalunga, M. Costas, S. Di Stefano, Inorg. Chem. 2015, 54,
10141-10152; g) S. Jana, M. Ghosh, M. Ambule, S. Sen Gupta, Org. Lett.
2017, 19, 746-749; h) M. Milan, M. Bietti, M. Costas, ACS Cent. Sci. 2017,
3, 196-204; i) J. Chen, M. Lutz, M. Milan, M. Costas, M. Otte, R. J. M. Klein
Gebbink, Adv. Synth. Catal. 2017, 359, 2590-2595; j) M. Ghish, S.
Pattanayak, B. B. Dhar, K. K. Singh, C. Panda, S. Sen Gupta, Inorg. Chem.
2017, 56, 10852-10860; k) W. Wang, D. Xu, Q. Sun, W. Sun, Chem. Asian
J. 2018, 13, 2458-2464.
Acknowledgements
Financial Support from JSPS KAKENHI Grant Number 18H04264 in
Precisely Designed Catalysis with Customized Scaffolding; The
International Institute for Carbon- Neutral Energy Research (WPI-I2CNER)
from MEXT, Japan, are grateful acknowledged.
Keywords: C–H oxidation• Non-Heme model • Hydroxylation•
Ruthenium • Site-selective oxidation
[1]
a) B. M. Trost, Science 1991, 254, 1471-1477; b) B. M. Trost, Angew.
Chem. 1995, 107, 285-307; Angew. Chem. Int. Ed. 1995, 34, 259-281;
c) N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. 2009, 121,
2896-2910; Angew. Chem. Int. Ed. 2009, 48, 2854-2867; d) T. Newhouse,
P. S. Baran, R. W. Hoffmann, Chem. Soc. Rev. 2009, 38, 3010-3021. e)
Thirunavukkarasu, S. I. Kozhushkov, L. Ackermann, Chem. Commun,
2014, 50, 29-39; f) S. Chiba, H. Chen, Org. Biomol. Chem. 2014, 12,
4051-4060; g) G.-D. Roiban, M. T. Reetz, Chem. Commun. 2015, 51,
2208-2224. h) J. F. Hartwig, J. Am. Chem. Soc. 2016, 138, 2-24; i) J C.
R. Shugrue, S. J. Miller, Chem. Rev. 2017, 117, 11894-11951.
[9]
a) J. England, C. R. Davies, M. Banaru, A. J. P. White, G. J. P. Britovsek,
Adv. Synth. Catal. 2008, 350, 883-897; b) M. Grau, A. Kyriacou, F. C.
Martinez, I. M. de Wispelaere, A. J. P. White, G. J. P. Britovsek, Dalton
Trans. 2014, 43, 17108-17119.
[10] T. H. Yosca, J. Rittle, C. M. Krest, E. L. Onderko, A. Silakov, J. C. Calixto,
R. K. Behan, M. T. Green, Science 2013, 342, 825-829.
[11] a) E. McNeill, J. Du Bois, Chem. Sci. 2012, 3, 1810-1813; b) T. Ishizuka,
H. Kotani, T. Kojima, Dalton Trans. 2016, 45, 16727-16750; c) J. B. C.
Mack, J. D. Gipson, J. Du Bois, M. S. Sigman, J. Am. Chem. Soc. 2017,
139, 9503-9506; d) J. B. C. Mack, K. L. Walker, S. G. Robinson, R. N.
Zare, M. S. Sigman, R. M. Waymouth, J. Du Bois, J. Am. Chem. Soc. 2019,
141, 972-980.
[2]
a) J. Dong, E. Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S.
Schmidt, Y. Wang, S. Younes, W. Zhang, Angew. Chem. 2018, 130,
9380-9404; Angew. Chem. Int. Ed. 2018, 57, 9238-9261; b) M. Bietti,
Angew. Chem. 2018, 130, 16858-16878; Angew. Chem. Int. Ed. 2018,
57, 16618-16637; c) H. Sterckx, B. Morel, B. U. W. Maes, Angew. Chem.
2019, 131, 8024-9055; Angew. Chem. Int. Ed. 2019, 58, 7946-7970.
a) R. Fassn, ACS Catal. 2012, 2, 647-666; b) V. Polic, K. Auclair, Bioorg.
Med. Chem. 2014, 22, 5547-5554; c) M. Milan, M. Bietti, M. Costas,
Chem. Commun. 2018, 54, 9559-9570; d) J. J. D. Sacramento, D. P.
Goldberg, Acc. Chem. Res. 2018, 51, 2641-2652; e) J. Xu, C. Wang, Z.
Cong, Chem. Eur. J. 2019, 25, 6853-6863.
[12] a) T. Kojima, Chem. Lett. 1996, 121-122; b) T. Kojima, K. Matsuda, Chem.
Lett. 1999, 81-82; c) T. Kojima, H. Matsuo, Y. Matsuda, Inorg. Chim. Acta
2000, 300-302; d) K. Jitsukawa, Y. Oka, H. Einaga, H. Masuda,
Tetrahedron Lett. 2001, 42, 3467; e) K. Jitsukawa, Y. Oka, S. Yamaguchi,
H. Masuda, Inorg. Chem. 2004, 43, 8119-8129; f) M. Yamaguchi, H.
Kousaka, S. Izawa, Y. Ichii, T. Kumano, D. Masui, T. Yamagishi, Inorg.
Chem. 2006, 45, 8342-8354; g) M. Murali, R. Mayilmurugan, M.
Palaniandavar, Eur. J. Inorg. Chem. 2009, 3238; h) F. Weisser, H. Stevens,
J. Klein, M. van der Meer, S. Hohloch, B. Sarkar, Chem. Eur. J. 2015, 21,
8926-8938.
[3]
[4]
a) P. C. A. Bruijnincx, G. van Koten, R. J. M. K. Gebbink, Chem. Soc. Rev.
2008, 37, 2716-2744; b) K. Ray, F. F. Pfaff, B. Wang, W. Nam, J. Am.
Chem. Soc. 2014, 136, 13942-13958; c) W. N. Oloo, L. Que, Jr. Acc.
Chem. Res. 2015, 48, 2612-2621; d) A. C. Lindhorst, S. Haslinger, F. E.
Kühn, Chem. Commun. 2015, 51, 17193-17212; e) G. Olivo, O.
Lanzalunga, S. D. Stefanno, Adv. Synth. Catal. 2016, 358, 843-863; f) X.
Engelmann, I. Monte-Pérez, K. Ray, Angew. Chem. 2016, 128, 7760-
7778; Angew. Chem. Int. Ed. 2016, 55, 7632-7649; g) G. Olivo, O. Cussó,
M. Borrell, M. Costas, J. Biol. Inorg. Chem. 2017, 22, 425-452; h) D. S.
Nesterov, O. V. Nesterova, A. J. L. Pombeiro, Coord. Chem. Rev. 2018,
355, 199-222; i) A. J. Jasniewski, L. Que, Jr. Chem. Rev. 2018, 118, 2554-
2592; j) M. Milan, M. Salamone, M. Costas, M. Bietti, Acc. Chem. Res.
2018, 51, 1984-1995; k) M. Guo, T. Corona, K. Ray, W. Nam, ACS Cent.
Sci. 2019, 5, 13-28.
[13] Đ. Škalamera, E. Sanders, R. Vianello, A. Maršavelski, A. Pevec, I. Turel,
S. I. Kirin, Dalton Trans. 2016, 45, 2845-2858.
[14] See supporting information for details.
[15] P.J. Stang, V.V. Zhdankin, Chem. Rev. 1996, 96, 1123-1178.
[16] M. Sankaralingam, Y.-M. Lee, Y. Pineda-Galvan, D. G. Kamalkar, M. S.
Seo, S. H. Jeon, Y. Pushkar, S. Fukuzumi, W. Nam, J. Am. Chem. Soc.
2019, 141, 1324-1336.
[17] Speculated from its dipropionate derivatives.; M. N. Sakač, K. M. P. Gasi,
M. Popsavin, E. A. Djurendić, S. Andrić, R. M. Kovačević Collect. Czech.
Chem. Commn. 2005, 70, 479-486.
[5]
Reviews on metalloporphyrin-catalysed oxidation reactions: a) B. Meunier,
Chem. Rev. 1992, 92, 1411-1456; b) C.-M. Che, J.-S. Huang, Chem.
Commun, 2009, 3996-4015; c) H. Lu, X. P. Zhang, Chem. Soc. Rev. 2011,
40, 1899-1909; d) C.-M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S. Huang, Chem.
Soc. Rev. 2011, 40, 1950-1975; e) M. Costas, Coord. Chem. Rev. 2011,
255, 2912-2932; f) W. Liu, J. T. Groves, Acc. Chem. Res. 2015, 48, 1727-
1735; g) J. C. Barona-Castaño, C. C. Carmona-Vargas, T. J. Brocksom,
K. T. de Oliveira, Molecules, 2016, 21, 310.
[18] The reaction of cyclobutanol with cis-1b using 1.5 equivalents of PhI=O
gave the corresponding ketone and lactone in 96 and 4% yields,
respectively.; a) O. Prstovsky, A. Bakac, J. Am. Chem. Soc. 2004, 126,
13757-13764; b) J. Roček, A. E. Radkowsky, J. Am. Chem. Soc. 1973, 95,
7123-7132; c) T. Ishizuka, T. Kogawa, M. Makino, Y. Shiota, K. Ohara, H.
Kotani, S. Nozawa, S. Adachi, K. Yamaguchi, K. Yoshizawa, T. Kojima,
Inorg. Chem. 2019, 58, 12815-12824.
[6]
a) L. Shu, J. C. Nesheim, K. Kauffmann, E. Münck, J. D. Lipscomb, L. Que,
Jr. Science 1997, 275, 515-518; b) G. Roelfes, M. Lubben, R. Hage, L.
4
This article is protected by copyright. All rights reserved.