a
Scheme 1. Different Pathways for the Arylamine Formation
Table 1. Optimization of the Reaction Conditions
b
entry
catalyst
ligand
solvent
NMP
yield (%)
1
Pd(OAc)
2
2
2
2
2
2
2
2
2
trace
trace
29
2
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
DPEPhos
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
3
PPh
3
4
dppe
33
5
dppp
40
6
dppm
72
The catalytic oxidative dehydrogenation reactions are
very useful tools for the construction of CdC, CdO, and
9
C;N bonds. Very recently, the research groups of Stahl
7
dppb
60
8
Xantphos
bipyridine
93
9
14
0
and Huang developed various Pd-catalyzed mild aerobic de-
hydrogenation reactions of cyclohexanones and ketones/
aldehydes using oxygen as the sole oxidant, and various
phenols and R,β-unsaturated ketones/aldehydes were syn-
10
11
Pd(OAc)2
PdO
2,2 -biquinoline NMP
74
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
Xantphos
NMP
NMP
NMP
NMP
NMP
DMF
DMSO
DMA
trace
trace
62
12
13
14
15
PdCl
Pd(OH)
Pd(acac)
Pd(CF CO
Pd(OAc)2
2
2
84
1
0
2
thesized selectively. Milstein et al. successfully developed a
Ru-catalyzed amide synthesis from alcohols and amines
3
2
)
2
61
16
17
30
11
with the liberation of H2 without any oxidant.
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
2
2
2
2
2
trace
75
1
1
2
2
8
9
0
1
1,4-dioxane
xylene
24
(
7) (a) Anderson, K. W.; Mendez-Perez, M.; Priego, J.; Buchwald,
43
S. L. J. Org. Chem. 2003, 68, 9563. (b) Roy, A. H.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 8704. (c) Huang, X.; Anderson, K. W.; Zim, D.;
Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
c
NMP
84
a
6653. (d) Liu, Z. J.; Larock, R. C. J. Org. Chem. 2006, 71, 3198. (e)
Conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (5 mol %),
ligand (10 mol %), solvent (0.3 mL), 24 h under argon unless otherwise
noted. GC yield based on 1a. 0.3 mmol of 2a was used.
Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848. (f) Fors,
B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc.
b
c
2008, 130, 13552. (g) So, C. M.; Zhou, Z.; Lau, C.; Kwong, F. Angew.
Chem., Int. Ed. 2008, 47, 6402. (h) Shimasaki, T.; Tobisu, M.; Chatani,
N. Angew. Chem., Int. Ed. 2010, 49, 2929. (i) Ramgren, S. D.; Silberstein,
A. L.; Yang, Y.; Grag, N. K. Angew. Chem., Int. Ed. 2011, 50, 2171. (j)
Ackermann, L.; Sandmann, R.; Song, W. F. Org. Lett. 2011, 13, 1784.
Furthermore, Williams et al. developed various catalytic
systems for direct amine formation from alcohols and
amines using a borrowing hydrogen strategy (or hydrogen
(
7
k) Xie, X.; Ni, G.; Ma, F.; Ding, L.; Xu, S.; Zhang, Z. Synlett 2011,
, 955.
8) For reviews: (a) Collet, F.; Dodd, R.; Dauban, P. Chem. Com-
mun. 2009, 5061. (b) Armstrong, A.; Collins, J. C. Angew. Chem., Int. Ed.
010, 49, 2282. (c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc.
Rev. 2011, 40, 5068.
9) For reviews on dehydrogenations: (a) Dobereiner, G. E.;
12,13
(
transfer).
We and others further extended this strategy
for aromatic CꢀN bond formation from alcohols and
2
1
4
nitroarenes. This method affords a short synthetic route
for CꢀN bond formation. However, the borrowing hydro-
gen methodology is limited for the alkylation of amines and
not suitable for diarylamine preparation. We envisioned
that it might be possible using nitroarenes and cyclohex-
anones instead of alcohols as starting materials for diaryla-
mine formation using a sequent dehydrogenation and
borrowing hydrogen strategy. First, nitroarene could be
reduced to amine using hydrogen generated from a cyclo-
hexanone oxidation step. The condensation of cyclohexa-
none (or cyclic enone) with amine will generate an imine
intermediate. Second, the imine intermediate could be
reduced to diarylamine using the borrowing hydrogen
methodology. This method can afford a shortcut for diary-
lamine synthesis using cheap and stable starting materials
without any external reducing reagent and oxidant. Herein,
we report a Pd-catalyzed one-pot diarylamine formation from
nitroarenes and cyclohexanones using the dehydrogenation and
borrowing hydrogen strategy (Scheme 1B).
(
Crabtree, R. H. Chem. Rev. 2010, 110, 681. (b) Muzart, J. Eur. J. Org.
Chem. 2010, 3779. (c) Scheuermann, C. J. Chem.;Asian J. 2010, 5, 436.
(
(
d) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588.
e) Choi, J.; MacArthur, A.; Brookhart, M.; Goldman, A. S. Chem.
Rev. 2011, 111, 1761.
10) (a) Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209. (b)
(
Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566. (c) Gao, W. M.;
He, Z.; Qian, Y.; Zhao, J.; Huang, Y. Chem. Sci. 2012, 3, 883. (d) Diao,
T.; Wadzinski, T. T.; Stahl, S. S. Chem. Sci. 2012, 3, 887.
(11) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
3
1
17, 790. (b) Gnanprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011,
33, 1682.
(12) For excellent recent reviews, see: (a) Nixon, T. D.; Whittlesey,
M. K.; Williams, J. M. J. Dalton Trans. 2009, 5, 753. (b) Guillena, G.;
Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. (c) Watson, A.;
Williams, J. M. J. Science 2010, 329, 635.
(13) For reaction mechanism study: Hamide, M.; Liana Allen, C.;
Lamb, G.; Maxwell, A.; Maytum, H.; Watson, A.; Williams, J. M. J.
J. Am. Chem. Soc. 2009, 131, 1766.
(14) (a) Feng, C.; Liu, Y.; Peng, S. M.; Shuai, Q.; Deng, G. J.; Li, C.-J.
Org. Lett. 2010, 12, 4888. (b) Liu, Y.; Chen, W.; Feng, C.; Deng, G. J.
Chem.;Asian J. 2011, 6, 1142. (c) Cui, X. J.; Zhang, Y.; Shi, F.; Deng,
Y. Q. Chem.;Eur. J. 2011, 17, 2587. (d) Zanardi, A.; Mata, J. A.; Peris,
E. Chem.;Eur. J. 2010, 16, 10502. (e) Cano, R.; Ram oꢀ n, D. J.; Yus, M.
J. Org. Chem. 2011, 76, 5574. (f) Tang, C. H.; He, L.; Liu, Y. M.; Cao, Y.;
He, H. Y.; Fan, K. N. Chem.;Eur. J. 2011, 17, 7172. (g) Xiao, F. H.;
Liu, Y.; Tang, C. L.; Deng, G. J. Org. Lett. 2012, 13, 984.
Our initial investigations were focused on the arylation
of commercially available and inexpensive nitrobenzene
Org. Lett., Vol. 14, No. 7, 2012
1693