10, 2045–2061; (d) F. Fache, E. Schulz, M. L. Tommasino and
M. Lemaire, Chem. Rev., 2000, 100, 2159–2231.
(a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562–7563; (b) A. Fujii, S. Hashiguchi,
N. Uematsu, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118,
concept was exemplified in the asymmetric reduction of ketones
under transfer hydrogenation conditions using a ruthenium-based
catalyst. By the careful choice of appropriate ligand building
blocks and reaction conditions we obtained a highly efficient and
enantioselective catalyst for the reduction of variously substituted
aryl alkyl ketones. Under optimized conditions it was possible to
form the product alcohols in up to . 99% ee. The simplicity of this
method in combination with its excellent performance in the
transfer hydrogenation reaction suggests that the concept of
forming ligand(s) and the active metal-catalyst in a one-pot
procedure prior to the catalytic reaction can be applied to other
asymmetric transformations.
6
2521–2522; (c) D. A. Alonso, D. Guijarro, P. Pinho, O. Temme and
P. G. Andersson, J. Org. Chem., 1998, 63, 2749–2751; (d) D. A. Alonso,
S. J. M. Nordin, P. Roth, T. Tarnai, P. G. Andersson, M. Thommen
and U. Pittelkow, J. Org. Chem., 2000, 65, 3116–3122; (e) S. J. M.
Nordin, P. Roth, T. Tarnai, D. A. Alonso, P. Brandt and P. G.
Andersson, Chem.–Eur. J., 2001, 7, 1431–1436; (f) K. Everaere,
A. Mortreux and J.-F. Carpentier, Adv. Synth. Catal., 2003, 345,
67–77; (g) M. Palmer, T. Walsgrove and M. Wills, J. Org. Chem., 1997,
62, 5226–5228; (h) M. Wills, M. Gamble, M. Palmer, A. Smith,
J. Studley and J. Kenny, J. Mol. Catal. A: Chem., 1999, 146, 139–148; (i)
M. J. Palmer, J. A. Kenny, T. Walsgrove, A. M. Kawamoto and
M. Wills, J. Chem. Soc., Perkin Trans. 1, 2002, 416–427.
We gratefully acknowledge the Swedish Research Council for
financial support.
7
(a) I. M. Pastor, P. V a¨ stil a¨ and H. Adolfsson, Chem. Commun., 2002,
2
2
046–2047; (b) I. M. Pastor, P. V a¨ stil a¨ and H. Adolfsson, Chem.–Eur. J.,
003, 9, 4031–4045; (c) A. Bøgevig, I. M. Pastor and H. Adolfsson,
Chem.–Eur. J., 2004, 10, 294–302.
Notes and references
{
General procedure for the in situ formation of ligand 1b and ruthenium
8 (a) K. Haas and W. Beck, Z. Anorg. Allg. Chem., 2002, 628, 788–796;
(b) K. Haas and W. Beck, Eur. J. Inorg. Chem., 2001, 2485–2488; (c)
W. Hoffm u¨ ller, M. Maurus, K. Severin and W. Beck, Eur. J. Inorg.
Chem., 1998, 729–731; (d) K. Severin, R. Bergs and W. Beck, Angew.
Chem., Int. Ed., 1998, 37, 1634–1654; (e) R. Kr a¨ mer, M. Maurus,
K. Polborn, K. S u¨ nkel, C. Robl and W. Beck, Chem.–Eur. J., 1996, 2,
1518–1526.
complex 2 followed by the direct reduction of ketones presented in Table 1.
Boc-L-Ala-ONp (0.01375 mmol) and (S)-1-amino-2-propanol (0.011 mmol)
were mixed in 2-propanol (1 mL) and refluxed for 1 hour in a dry Schlenck
tube, under inert atmosphere (N
temperature before i-PrONa (0.20 mmol in 2 mL 2-propanol) was added
followed by acetophenone (1 mmol), [RuCl (p-cymene)] (0.005 mmol) and
2
). The mixture was cooled to ambient
2
2
additional 2-propanol (2 mL). The reaction mixture was stirred at ambient
temperature. Aliquots were taken at different time intervals and quenched
with diluted brine (1 mL), extracted with EtOAc (1 mL), passed through a
pad of silica and washed with EtOAc. The resulting solution was analyzed
by GLC (CP Chirasil DEX CB).
2 2
9 The reduction of acetophenone, catalyzed by [RuCl (p-cymene)] and
(S)-1-amino-2-propanol, gave the corresponding secondary alcohol in
83% conversion and 67% ee (S-isomer).
10 In control experiments using acetophenone and a catalyst based on
either Boc-L-Ala-ONp or Boc-L-Ala and [RuCl (p-cymene)] we
2
2
observed no product formation. However, Ru-complexes based on
unprotected amino acids are reported to act as catalysts in the transfer
hydrogenation of aryl alkyl ketones, see: (a) T. Ohta, S.-I. Nakahara,
Y. Shigemura, K. Hattori and I. Furukawa, Chem. Lett., 1998, 491–492;
1
2
Comprehensive Asymmetric Catalysis, E. N. Jacobsen, A. Pfaltz,
H. Yamamoto, Eds.; Springer-Verlag: Berlin, 1999.
(a) C. Gennari and U. Piarulli, Chem. Rev., 2003, 103, 3071–3100; (b)
K. D. Shimizu, M. L. Snapper and A. H. Hoveyda, Chem.–Eur. J.,
(b) T. Ohta, S.-I. Nakahara, Y. Shigemura, K. Hattori and I. Furukawa,
Appl. Organomet. Chem., 2001, 15, 699–709; (c) A. Katho, D. Carmona,
F. Viguri, C. D. Remacha, J. Kov a´ cs, F. Jo o´ and L. A. Oro,
J. Organomet. Chem., 2000, 593–594, 299–306.
1998, 4, 1885–1889; (c) J. F. Traverse and M. L. Snapper, Drug
Discovery Today, 2002, 7, 1002–1012.
For a combinatorial approach using mixtures of chiral ligands in
catalysis, see: M. T. Reetz, T. Sell, A. Meiswinkel and G. Mehler,
Angew. Chem., Int. Ed., 2003, 42, 790–793.
H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner and M. Studer,
Adv. Synth. Catal., 2003, 345, 103–151.
(a) G. Zassinovich, G. Mestroni and S. Gladiali, Chem. Rev., 1992, 92,
3
11 The proposed structure of catalyst 2 is displayed in Scheme 1. Attempts
to isolate and analyze this complex have so far been unsuccessful.
12 As an example, the reduction of acetophenone using the in situ formed
catalyst based on Boc-L-Val-ONp, (S)-1-amino-2-propanol and
4
5
2 2
[RuCl (p-cymene)] gave 1-phenylethanol in merely 29% conversion
1
051–1069; (b) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30,
with 96% ee (S-isomer, reaction time 1 h). See Scheme 1 for the result
obtained with ligand 1b.
97–102; (c) M. J. Palmer and M. Wills, Tetrahedron: Asymmetry, 1999,
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 4039–4041 | 4041