10.1002/ejoc.202000537
European Journal of Organic Chemistry
COMMUNICATION
Subjecting commonly utilized photoredox catalysts[46] to the
optimized conditions did not reveal any trend between their triplet
state energy (TSE) and yield of the [3+2] product 17 (Table 2).
Ir(dF-CF3-ppy)2dtbpy+ with TSE of 60.1 kcal.mol-1[46] is frequently
Keywords: energy-transfer • photocatalysis • ATRA • ATRC •
pyrrolidines
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
M. S. Kharasch, E. V. Jensen, W. H. Urry, Science 1945,
102, 128.
J.-S. Wang, K. Matyjaszewski, J. Am. Chem. Soc. 1995,
117, 5614-5615.
T. Courant, G. Masson, J. Org. Chem. 2016, 81, 6945-
6952.
J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam, C. R.
J. Stephenson, Nature Chemistry 2012, 4, 854-859.
C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J.
Stephenson, J. Am. Chem. Soc. 2012, 134, 8875-8884.
M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser,
Chem. Eur. J. 2012, 18, 7336-7340.
T. Rawner, E. Lutsker, C. A. Kaiser, O. Reiser, ACS
Catalysis 2018, 8, 3950-3956.
M. Knorn, T. Rawner, R. Czerwieniec, O. Reiser, ACS
Catalysis 2015, 5, 5186-5193.
Q. Qin, D. Ren, S. Yu, Org. Biomol. Chem. 2015, 13,
10295-10298.
N. Iqbal, J. Jung, S. Park, E. J. Cho, Angew. Chem. Int.
Ed. 2014, 53, 539-542.
X. Sun, Y. He, S. Yu, J. Photochem. Photobiol. A 2018,
355, 326-331.
utilized in energy-transfer processes. In our [3+2] cycloaddition,
[39]
this catalyst provided 17 in 54% yield. Ir(ppy)3
is another
catalyst with relatively high TSE of 55.8 kcal.mol-1but it provided
17 in only 11% yield. Ru(bpy)3 with TSE of 45.0 kcal.mol-1
2+
provided 17 in 44% yield and Eosin Y[50] with slightly lower TSE of
43.6 kcal.mol-1 provided the products in a 9% yield. Ir(ppy)2dtbpy+,
which was identified as the optimal catalyst, provided the highest,
100% yield in the given set of experiments. These results illustrate
that similar processes initiated via energy transfer are more
dependent on matched energy levels between reaction partners
rather than the TSE of the photosensitizer and BDE of the
homolyzed bond.
Table 2. Influence of TSE on the yield of the [3+2] cycloaddition.
Entry[a]
catalyst
TSE
(kcal.mol-1)
yield of 17a
1
2
3
4
5
Ir(dF-CF3-ppy)2dtbpy.PF6
Ir(ppy)3
60.1
55.8[46]
49.3
54%
11%
100%
44%
9%
[12]
[13]
T. M. Williams, C. R. J. Stephenson.
X. Gu, X. Li, Y. Qu, Q. Yang, P. Li, Y. Yao, Chem. Eur. J.
2013, 19, 11878-11882.
Ir(ppy)2dtbpy.BF4
Ru(bpy)3.(PF6)2
Eosin Y
[14]
T. M. Williams, C. R. J. Stephenson, in Visible Light
Photocatalysis in Organic Chemistry (Eds.: C. R. J.
Stephenson, T. P. Yoon, D. W. C. MacMillan), Wiley-VCH,
2018, pp. 73-92.
45.0
43.6[50]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, F.
Glorius, Chem. Soc. Rev. 2018, 47, 7190-7202.
K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016,
116, 10035-10074.
C. Michelin, N. Hoffmann, ACS Catalysis 2018, 8, 12046-
12055.
A. E. Hurtley, Z. Lu, T. P. Yoon, Angew. Chem. Int. Ed.
2014, 53, 8991-8994.
E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker,
D. W. C. MacMillan, Science 2017, 355, 380.
T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P.
Yoon, Science 2016, 354, 1391.
E. Arceo, E. Montroni, P. Melchiorre, Angew. Chem. Int.
Ed. 2014, 53, 12064-12068.
D. Griller, K. U. Ingold, Acc. Chem. Res. 1980, 13, 317-
323.
[a] determined by calibrated GC/MS analysis using dimethyl sulfone as the
internal standard. [a] Conditions 200 µmol scale with catalyst (2 mol%), 2.0
equiv of t-Butyl vinyl ether irradiated for 48 h in CH3CN (0.5 M);
Conclusion
In conclusion, we have developed a protocol for the formal
[3+2] cycloaddition between aziridinylmethyl iodides and electron-
rich olefins. The conditions grant access to all substitution
patterns of trisubstituted pyrrolidines. While control of
stereochemistry is challenging, we observed that the substitution
pattern for the olefins plays a more important role than that of the
aziridines. In general, the reaction conditions tolerate a variety of
functional groups, and the corresponding products are isolated in
useful chemical yields. We have also demonstrated that the
energy transfer triggers the initiation of the reaction and that the
operating mechanism is a chain transfer process.
[23]
[24]
D. J. Pasto, J. Org. Chem. 1996, 61, 252-256.
B. A. Marples, R. C. Toon, Tetrahedron Lett. 1999, 40,
4873-4876.
[25]
[26]
N. Prévost, M. Shipman, Org. Lett. 2001, 3, 2383-2385.
M.-H. Larraufie, R. Pellet, L. Fensterbank, J.-P. Goddard,
E. Lacôte, M. Malacria, C. Ollivier, Angew. Chem. Int. Ed.
2011, 50, 4463-4466.
[27]
[28]
[29]
[30]
W. R. Bowman, M. J. Broadhurst, D. R. Coghlan, K. A.
Lewis, Tetrahedron Lett. 1997, 38, 6301-6304.
O. Kitagawa, Y. Yamada, H. Fujiwara, T. Taguchi, Angew.
Chem. Int. Ed. 2001, 40, 3865-3867.
O. Kitagawa, S. Miyaji, Y. Yamada, H. Fujiwara, T.
Taguchi, J. Org. Chem. 2003, 68, 3184-3189.
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R.
Humphrey, J. J. L. Leazer, R. J. Linderman, K. Lorenz, J.
Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang,
Green Chemistry 2007, 9, 411-420.
Acknowledgements
The authors would like to acknowledge the European
Commission for a Marie-Curie individual fellowship to P. F. (grant
number 799943 SUPER) and the Swedish research council for a
grant to C.J.W (grant number 2018-04871). Professor Elisabeth
Ahlberg is gratefully acknowledged for fruitful discussions on
electrochemistry. Professor Karl Börjesson and Manuel Hertzog
are acknowledged for discussions on energy transfer
mechanisms and assistance with quenching assays, and Dr.
Leticia Monjas is acknowledged for proof-reading of the
manuscript.
[31]
[32]
[33]
[34]
O. Kitagawa, T. Suzuki, T. Taguchi, J. Org. Chem. 1998,
63, 4842-4845.
Y. Morino, I. Hidaka, Y. Oderaotoshi, M. Komatsu, S.
Minakata, Tetrahedron 2006, 62, 12247-12251.
A. L. J. Beckwith, C. J. Easton, A. K. Serelis, J. Chem.
Soc., Chem. Commun. 1980, 482-483.
A. L. J. Beckwith, T. Lawrence, A. K. Serelis, J. Chem.
Soc., Chem. Commun. 1980, 484-485.
5
This article is protected by copyright. All rights reserved.