Journal of the American Chemical Society
ARTICLE
(5) (a) Zhang, G. Z.; Peng, Y.; Cui, L.; Zhang, L. M. Angew. Chem.-Int.
Ed. 2009, 48, 3112–3115. (b) Zhang, G. Z.; Cui, L.; Wang, Y. Z.; Zhang,
L. M. J. Am. Chem. Soc. 2010, 132, 1474–1475. (c) Zhang, G.; Luo, Y.;
Wang, Y.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 4450.
(6) (a) Melhado, A. D.; Brenzovich, W. E.; Lackner, A. D.; Toste, F. D.
J. Am. Chem. Soc. 2010, 132, 8885–8886. (b) Brenzovich, W. E.; Benitez, D.;
Lackner, A. D.; Shunatona, H. P.; Tkatchouk, E.; Goddard, W. A.; Toste,
F. D. Angew. Chem.-Int. Ed. 2010, 49, 5519–5522. (c) Mankad, N. P.; Toste,
F. D. J. Am. Chem. Soc. 2010, 132, 12859–12861. (d) Brenzovich, W. E.;
Brazeau, J.-F.; Toste, F. D. Org. Lett. 2010, 12, 4728.
(7) (a) Ball, L. T.; Green, M.; Lloyd-Jones, G. C.; Russel, C. A. Org.
Lett. 2010, 12, 4724. (b) Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B.
Angew. Chem., Int. Ed. 2010, 49, 7247. (c) Hopkinson, M. N.; Tessier, A.;
Salisbury, A.; Giuffedi, G. T.; Combettes, L. E.; Gee, A. D.; Gouverneur,
V. Chem.—Eur. J. 2010, 16, 7443. (d) de Haro, T.; Nevado, C. Angew.
Chem., Int. Ed. 2011, 50, 906–910. For a recent reviews, see:(e) Engle,
K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem.-Int. Ed. 2011,
50, 1478.(f) Hopkins, M. N.; Gee, A. D.; Gouverneur, V. Chem. Eur.
J. 2011, 30, 8248.
(8) (a) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc.
2011, 133, 1760. (b) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter,
T. J. Am. Chem. Soc. 2010, 132, 14530–14536. (c) Powers, D. C.;
Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Ritter, T. J. Am. Chem. Soc.
2010, 132, 14092–14103. (d) Powers, D. C.; Geibel, M. A. L.; Klein, J. E.
M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050–17051. (e) Tang, P.;
Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150–12154. (f) Powers,
D. C.; Ritter, T. Nat. Chem. 2009, 1, 302–309.
(b) Wang, Z. J.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Toste,
F. D. J. Am. Chem. Soc. 2010, 132, 13064–13071.
(21) Less coordinating anions exhibited lower yields; see ref 6b.
(22) Ph3PAuBr transmetalates with PhB(OH)2 to 59% yield in the
presence of Cs2CO3 at 50 °C after 24 h, see:Partyka, D. V.; Zeller, M.;
Hunter, A. D.; Gray, T. G. Angew. Chem.-Int. Ed. 2006, 45, 8188–8191.
(23) Our studies do not exclude the possibility of reductive elimina-
tion from binuclear Au(II) or mononuclear (III) centers as proposed by
Gouverneur and co-workers, see:Hopkinson, M. N.; Ross, J. E.; Giuffredi,
G. T.; Gee, A. D.; Gouverneur, V. Org. Lett. 2010, 12, 4904–4907.
(24) Whitesides, G. M.; Boschetto, D. J. J. Am. Chem. Soc. 1969, 91,
4313.
(25) Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2010,
46, 2742.
(26) Hashmi et al. have reported the preparation of Ph3PAuEt from
Ph3PAuCl and EtB(OH)2 in the presence of Cs2CO3, but the reported
characterization data does not match that of independently synthesized
Ph3PAuEt. See ref 4.
(27) Selected references:(a) Ohmura, T.; Awano, T.; Suginome, M.
J. Am. Chem. Soc. 2010, 132, 13191. (b) Sandrock, D. L.; Jean-Gꢀerard, L.;
Chen, C.-y.; Dreher, S. D.; Molander, G. A. J. Am. Chem. Soc. 2010,
132, 17108.
(28) Selected references:(a) Ridgway, B. H.; Woerpel, K. A. J. Org.
Chem. 1998, 63, 458. (b) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998,
63, 461. (c) Wendt, O. F. Curr. Org. Chem. 2007, 11, 1417.
(29) Scott, V. J.; Labinger, J. A.; Bercaw, J. E. Organometallics 2010,
29, 4090.
(9) (a) Yam, V. W. W.;Li, C. K.; Chan, C. L.; Cheung, K. K.Inorg. Chem.
2001, 40, 7054–7058. (b) Bhargava, S. K.; Mohr, F.; Bennett, M. A.; Welling,
L. L.; Willis, A. C. Organometallics 2000, 19, 5628–5635. (c) Bennett, M. A.;
Bhargava, S. K.; Mirzadeh, N.; Priver, S. H.; Wagler, J.; Willis, A. C. Dalton
Trans. 2009, 7537–7551. (d) Jiang, Y.; Alvarez, S.; Hoffmann, R. Inorg. Chem.
1998, 37, 3018. (e) Pyykko, P.; Mendizabal, F. Inorg. Chem. 1998, 37, 3018.
(f) Melgarejo, D. Y.; Chiarella, G. M.; Fackler, J. P., Jr.; Perez, L. M.;
Rodrigue-Witchel, A.; Reber, C. Inorg. Chem. 2011, 50, 4238.
(30) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736–1740.
(b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83,
735–746.
(31) (a) Basil, J. D.; Murray, H. H.; Fackler, J. P.; Tocher, J.; Mazany,
A. M.; Trzcinskabancroft, B.; Knachel, H.; Dudis, D.; Delord, T. J.;
Marler, D. O. J. Am. Chem. Soc. 1985, 107, 6908–6915. (b) Flemming,
J. P.; Pilon, M. C.; Borbulevitch, O. Y.; Antipin, M. Y.; Grushin, V. V.
Inorg. Chim. Acta 1998, 280, 87–98.
(10) (a) Fernandez, E. J.; Hardacre, C.; Laguna, A.; Lagunas, M. C.;
Lopez-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.;
Puelles, R. C.; Sanchez-Forcada, E. Chem.—Eur. J. 2009, 15, 6222–6233.
(b) Wu, J.; Kroll, P.; Dias, H. V. R. Inorg. Chem. 2009, 48, 423–425.
(11) Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931–
1951. (b) Partyka, D. V.; Updegraff, J. B.; Zeller, M.; Hunter, A. D.; Gray,
T. G. Dalton Trans. 2010, 5388–5397.
(12) Pan, Q. J.; Zhou, X.; Guo, Y. R.; Fu, H. G.; Zhang, H. X. Inorg.
Chem. 2009, 48, 2844–2854.
(13) To obtain the enthalpy and free energy at 298 K, we combine
the QM electronic energy (including solvation) with QM vibrational
frequencies (unscaled) inserted into the appropriate quantum statistical
relations. For the small organic species, we use the full ideal gas
vibrational, rotational, and translational components. For the metal
complexes, we use the vibrational components to the entropy plus 6R
(Stot = Svib + 6R) to account for the change of rotational and translational
degrees of freedom due to formation of a product molecule. We have
found this methodology to be adequate for solution phase free energy
calculations, see:Benitez, D.; Tkatchouk, E.; Goddard, W. A. Organo-
metallics 2009, 28, 2643–2645.
+
(14) All potentials are referenced to the FeCp2 /FeCp2 couple.
(15) Teets, T. S.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 7411–7420.
(16) de la Riva, H.; Pintado-Alba, A.; Nieuwenhuyzen, M.; Hardacre,
C.; Lagunas, M. C. Chem. Commun. 2005, 4970.
(17) (a) Schmidaur, H.; Wohllenben, A.; Wagner, F.; Orama, O.;
Huttner, G. Chem. Ber. 1977, 110, 1748. (b) Healy, P. C. Acta Crystallogr.,
Sect. E 2003, 59, m1112.
(18) Fackler, J. P., Jr. Inorg. Chem. 2002, 41, 6959.
(19) In the case of these carbene complexes, we hypothesis that the
observed 2-electron oxidation is a result of two unresolved 1-electron
redox events.
(20) (a) LaLonde, R. L.; Brenzovich, W. E.; Benitez, D.; Tkatchouk,
E.; Kelley, K.; Goddard, W. A.; Toste, F. D. Chem. Sci. 2010, 1, 226–233.
14300
dx.doi.org/10.1021/ja2012627 |J. Am. Chem. Soc. 2011, 133, 14293–14300