Page 5 of 7
Pl Ne ae swe Jd oo u nr no at l ao dfj Cu sh te mm ai sr tgr iyn s
DOI: 10.1039/C7NJ03911E
Journal Name
ARTICLE
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21561162004), the Natural Science
Foundation of Jilin Province (20150101183JC), the Science and
Technology Development Project (International Collaboration
Program) of Jilin Province (20160414040GH) and the Natural
Science Project of Jinlin Province (20150204030YY).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
08, 1517.
H. Tapiero, D. M. Townsend and K. D. Tew, Biomed.
Pharmacother, 2003, 57, 386.
K. Boal and A. C. Rosenzweig, Chem. Rev. 2009, 109, 4760.
Y. H. Hung, A. I. Bush and R. A. Cherny, J. Biol. Inorg. Chem.,
2010, 15, 61.
J. S. Valentine and P. J. Hart, Proc. Natl. Acad. Sci. USA, 2003,
100, 3617.
D. R. Brown and H. Kozlowski, Dalton Trans., 2004, 1907.
Figure 6. Changes in fluorescence intensity of BOPHY-PTZ (1 µM) in the presence
1
2+
2+
2+
2+
of Cu (2 µM) and other metal ions (20 µM each). (1) Cu , (2) Cu + Mn , (3)
2
2
+
2+
2+
+
2+
2+
2+
2+
2+
2+
2+
Cu + Pb , (4) Cu + Ag , (5) Cu + Ca , (6) Cu + Ni , (7) Cu + Ba , (8) Cu
+
+
2
+
2+
2+
2+
+
2+
3+
2+
2+
2+
Cd , (9) Cu + Hg , (10) Cu +Li , (11) Cu + Fe , (12) Cu + Mg , (13) Cu + K ,
3
4
2
+
2+
(
14) Cu + Zn .
The assay was also tested using environmental water samples.
The practical application of our method was evaluated by
5
2
+
determination of the recovery of spiked Cu ions in tap water
samples. Firstly, the tap water samples were filtered through a
nitrocellulose filter (0.22 μM). Subsequently, different
6
7
H. Ghrefat and N. Yusuf, Jordan, Chemosphere., 2006, 65
2114.
L. J. Fan and W. E. Jones, J. Am. Chem. Soc., 2006, 128, 6784.
,
2
+
8
9
concentrations of Cu (25, 50, 100 nM) were spiked into the tap
L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff and C. J. Chang, J.
Am. Chem. Soc., 2006, 128, 10.
0 Y. Zhao, X. B. Zhang, Z. X. Han, L. Qiao, C. Y. Li, L. X. Jian, G. L.
Shen and R. Q. Yu, Anal. Chem., 2009, 81, 7022.
1 J. Zong, X. l. Yang, A. Trinchi, S. Hardin, I. Cole, Y. H. Zhu, C. Z.
water samples, and their recovery values were determined (Table
1
). Satisfactory recovery was obtained. The results clearly prove
1
1
that the BOPHY-PTZ probe can be used for practical analysis of
complex environmental samples.
Li, T. Muster and G. Wei, Biosens. Bioelectron., 2014, 51
330.
,
2
+
Table 1. Cu recovery in tap water samples.
1
2 M. G. Choi, S. Y. Cha, H. K. Lee, H. L. Jeon and S. K. Chang,
Chem. Commun., 2009, 7390.
Added
nM)
Found
(nM)
RSD (%,
n=3)
1
1
1
3 J. W. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129, 9838-9839.
4 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891.
5 N. Boens, V. Leen, and W. Dehaen, Chem. Soc. Rev., 2012,
Sample
Recovery (%)
(
41, 1130.
6 S. Tamgho, A. Hasheminasab, J. T. Engle, V. N. Nemykin and
C. J. Ziegler, J. Am. Chem. Soc., 2014, 136, 5623.
17 L. Wang, I. S. Tamgho, L. A. Crandall, J. J. Rack and C. J.
Ziegler, Phys. Chem. Chem. Phys., 2015, 17, 2349.
8 J. Yu, L. J. Jiao, P. Zhang, Z. Y. Feng, C. Cheng, Y. Wei, X. L. Mu
and E. H. Hao, Org. Lett., 2014, 16, 3048.
9 X. D. Jiang, Y. J. Su, S. Yue, C. Li, H. F. Yu, H. Zhang, C. L. Sun
and L. J. Xiao, RSC Adv., 2015, 5, 16735.
0 Y. X. Li, H. P. Zhou, S. H. Yin, H. Jiang, N. Niu, H. Huang, S. A.
Shahzad and C. Yu, Sens. Actuators, B., 2016, 235, 33.
1
2
3
25.0
50.0
24.5 ± 0.9
49.3 ± 0.9
99.5 ± 1.0
98.2
98.6
99.5
1.04
1.15
1.19
1
1
1
2
100.0
Conclusions
In summary, a novel D-π-A type fluorine boron compound
BOPHY-PTZ was successfully synthesized and employed as a
2
+
highly selective and sensitive fluorescence sensor for Cu . The 21 Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003,
1
03, 3899.
effective ICT process from PTZ to BOPHY caused efficient
quenching of the probe fluorescence. However, when PTZ was
oxidized to phenothiazine-5-oxide (PTZO) upon the addition of
2
2
2 X. M. Gao, Y. L. Zhang, B. H. Wang, Org. Lett., 2003, 5, 4615.
3 C. H. Dai, D. L. Yang, W. J. Zhang, B. Q. Bao, Y. X. Cheng, L. H.
Wang, Polym. Chem., 2015, 6, 3962.
2
+
Cu ions, the ICT process was effectively broken, and the dye 24 J. Yang, Y. J. Chang, M. Watanabe, Y. S. Hon and J. Chow, J.
BOPHY-PTZO emitted strong fluorescence. The assay exhibits
Mater. Chem., 2012, 22, 4040.
5 Q. Huaulmé, A. Mirloup, P. Retailleau and R. Ziessel, Org.
Lett., 2015, 17, 2246.
6 Y. S. Yen, J. T. Lin, C. W. Chang, C. P. Hsu and D. J. Yin, J. Phys.
Chem., 2008, 112, 12557.
27 H. P. Zhou, P. C. Xue, Y. Zhang, X. Zhao, J. H. Jia, X. F. Zhang,
2
high sensitivity and selectivity for Cu ions. It is simple, fairly
+
2
2
fast and convenient. The BOPHY-PTZ probe show good
2
+
potential for quantitative determination of Cu ions in
analytical and environmental monitoring related applications.
X. L. Liu and R. Lu, Tetrahedron, 2011, 67, 8477.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins