RSC Advances
Paper
70 nm. Hydrodynamic diameter of iPS-b-iP(p-HOS) micelles in 15 S. Tanaka, R. Goseki, T. Ishizone and A. Hirao,
methanol were further measured using DLS, as shown in Macromolecules, 2014, 47, 2333–2339.
Fig. 10. The hydrodynamic diameter of iPS-b-iP(p-HOS) micelles 16 Z. Q. Wu, Y. Chen, Y. Wang, X. Y. He, Y. S. Ding and N. Liu,
was about 74 nm, constant with SEM results.
Chem. Commun., 2013, 49, 8069–8071.
17 J. X. Yang, Y. Y. Long, L. Pan, Y. F. Men and Y. S. Li, ACS Appl.
Mater. Interfaces, 2016, 8, 12445–12455.
18 J. Wu, H. Jiang, L. Zhang, Z. Cheng and X. Zhu, Polym. Chem.,
2016, 7, 2486–2491.
Conclusions
A
series of isospecic diblock copolymers of iPS-b-iP(p-
TBDMSOS) with well-controlled molecular weights, narrow 19 Y. Ren, Z. Wei, X. Leng, Y. Wang and Y. Li, Polymer, 2015, 78,
molecular weight distribution, and tunable block ratios, have
51–58.
been successfully synthesized using sequent living coordination 20 A. D. Todd and C. W. Bielawski, ACS Macro Lett., 2015, 4,
polymerization of styrene and p-TBDMSOS monomers with 1254–1258.
complex 1/MAO as a catalyst. iPS-b-iP(p-TBDMSOS) displays two 21 R. Goseki, S. Onuki, S. Tanaka, T. Ishizone and A. Hirao,
glass transition temperatures (ꢀ97 and ꢀ117 ꢁC), originating
Macromolecules, 2015, 48, 3230–3238.
from the iPS and iP(p-TBDMSOS) blocks, respectively. Further- 22 S. J. Buwalda, A. Amgoune and D. Bourissou, J. Polym. Sci.,
more, a novel amphiphilic diblock copolymer of iPS-b-iP(p-HOS)
is prepared through the hydrolysis of the p(p-TBDMSOS) block 23 J. F. Reuther, M. P. Bhatt, G. Tian, B. L. Batchelor, R. Campos
in the presence of hydrochloric acid. iPS-b-iP(p-HOS) self
and B. M. Novak, Macromolecules, 2014, 47, 4587–4595.
assembles into spherical micelles with size of approximately 24 T. C. Chung, Prog. Polym. Sci., 2002, 27, 39–85.
Part A: Polym. Chem., 2015, 54, 1222–1227.
70 nm in methanol.
25 T. Shiono, Y. Akino and K. Soga, Macromolecules, 1994, 27,
6229–6231.
26 Y. J. Chen, B. J. Wu, F. S. Wang, M. H. Chi, J. T. Chen and
C. H. Peng, Macromolecules, 2015, 48, 6832–6838.
Acknowledgements
This work was supported by the National Natural Science 27 H. C. Kolb, M. Finn and K. B. Sharpless, Angew. Chem., Int.
Foundation of China (21174167, 51573212) and the NSF of
Guangdong Province (S2013030013474, 2014A030313178).
Ed., 2001, 40, 2004–2021.
28 W. H. Binder and R. Sachsenhofer, Macromol. Rapid
Commun., 2007, 28, 15–54.
29 T. Li, W. J. Wang, R. Liu, W. H. Liang, G. F. Zhao, Z. Y. Li,
Q. Wu and F. M. Zhu, Macromolecules, 2009, 42, 3804–3810.
Notes and references
1 L. Sung, J. F. Douglas, C. C. Han and A. Karim, J. Polym. Sci., 30 Z. Y. Li, R. Liu, B. Y. Mai, S. Feng, Q. Wu, G. D. Liang,
Part B: Polym. Phys., 2003, 41, 1697–1700. H. Y. Gao and F. M. Zhu, Polym. Chem., 2013, 4, 954–960.
2 H. K. Jeon, B. J. Feist, S. B. Koh, K. Chang, C. W. Macosko and 31 R. Liu, Z. Y. Li, B. Y. Mai, Q. Wu, G. D. Liang, H. Y. Gao and
R. P. Dion, Polymer, 2004, 45, 197–206. F. M. Zhu, J. Polym. Res., 2013, 20, 1–11.
3 A. Blanazs, S. P. Armes and A. J. Ryan, Macromol. Rapid 32 Q. H. Zhou, Z. Y. Li, H. Q. Liang, Y. J. Long, Q. Wu, H. Y. Gao,
Commun., 2009, 30, 237–266.
G. D. Liang and F. M. Zhu, Chin. J. Polym. Sci., 2015, 33, 646–
4 G. Pandav and V. Ganesan, Macromolecules, 2015, 73, 16–22.
651.
5 J. Rodriguez-Hernandez, F. Checot, Y. Gnanou and 33 X. L. He, W. Li, A. M. Liang, J. J. Chen, A. D. Wang, B. L. Hu,
S. Lecommandoux, Prog. Polym. Sci., 2005, 30, 691–724.
6 B. A. Rozenberg and R. Tenne, Prog. Polym. Sci., 2008, 33, 40–
112.
J. W. Shi and A. M. Chen, China Synth. Rubber Ind., 2011, 34,
8–12.
34 Y. Kim and Y. Do, Macromol. Rapid Commun., 2000, 21, 1148–
7 N. Tomczak, D. Jancsewski, M. Han and G. J. Vancso, Prog.
Polym. Sci., 2009, 34, 393–430.
1155.
´
35 M. Franco, F. J. Rabagliati, A. A. Rodrıguez, M. I. Antxon and
´
M.-G. Sebastian, Polymer, 2007, 48, 4646–4652.
8 A. Meristoudi, G. Mountrichas and S. Pispas, Encyclopedia of
nanoscience and nanotechnology, American Scientic 36 C. Bae, US Pat., US7671157,2010.
Publishers, 2010.
37 S. Andre, F. Guida-Pietrasanta, A. Rousseau and B. Boutevin,
9 N. Nishiyama and K. Kataoka, Pharmacol. Ther., 2006, 112,
630–648.
10 N. Nishiyama and K. Kataoka, Adv. Polym. Sci., 2006, 193, 67–
101.
11 J. H. Park, S. Lee, J.-H. Kim, K. Park, K. Kim and I. C. Kwon,
Prog. Polym. Sci., 2008, 33, 113–137.
J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2414–2425.
38 B. C. Auman, V. Percec, H. A. Schneider and H. J. Cantow,
Polymer, 1987, 28, 1407–1417.
39 B. N. Gacal, V. Filiz, S. Shishatskiy, S. Rangou, S. Neumann
and V. Abetz, J. Polym. Sci., Part B: Polym. Phys., 2013, 51,
1252–1261.
12 N. Hadjichristidis, M. Pitsikalis and H. Iatrou, Adv. Polym. 40 C. Capacchione, A. Proto, H. Ebeling, R. Mulhaupt,
Sci., 2005, 189, 1–124.
13 G. Leone, Polym. Chem., 2012, 3, 1987–1990.
K. Moller, T. P. Spaniol and J. Okuda, J. Am. Chem. Soc.,
2003, 125, 4964–4965.
14 A. Anastasaki, C. Waldron, P. Wilson, C. Boyer, 41 C. Capacchione, R. Manivannan, M. Barone, K. Beckerle,
P. B. Zetterlund, M. R. Whittaker and D. Haddleton, ACS
Macro Lett., 2013, 2, 896–900.
R. Centore, L. Oliva, A. Proto, A. Tuzi, T. P. Spaniol and
J. Okuda, Organometallics, 2005, 24, 2971–2982.
19892 | RSC Adv., 2017, 7, 19885–19893
This journal is © The Royal Society of Chemistry 2017