Y. Lv et al. / Journal of Alloys and Compounds 492 (2010) 259–263
263
nescent properties. In conclusion, we designed and synthesized
three kinds of rare-earth complexes with violet light absorption.
The intramolecular energy transfer effectively from organic lig-
mission of Hei Long Jiang Province(11541362), Commission of Hei
Long Jiang Province(B200917), China National Funds for Young Sci-
entists(20901031), Key Laboratory of Photochemistry, Institute of
Chemistry, Chinese Academy of Sciences and Key Laboratory of
Luminescence and Optical Information, Beijing Jiaotong University.
3
+
ands to Eu is the most important factor which influencing the
luminescence properties of rare-earth complexes. The intramolec-
ular energy transfer effectively depends chiefly on two energy
transfer processes: the first one comes from the triplet level of lig-
ands to the emissive energy level of the Eu3+ by Dexter’s resonant
energy transfer interaction; the second one is just an inverse energy
transfer by a thermal deactivation mechanism. Both energy trans-
fer rate constant depend on the energy differences between the
triplet level of the ligands and the resonant emissive energy level of
References
[
[
[
1] Q.M. Wang, B. Yan, X.H. Zhang, J. Photochem. Photobiol. A Chem. 174 (2005)
119.
2] M. Hasegawa, A. Ishii, S. Kishi, J. Photochem. Photobiol. A Chem. 178 (2006)
220.
3] S. Ma, M. Gao, R. Li, H.G. Pan, Y.Q. Lei, J. Alloys Compd. 457 (2008) 457.
3+
Eu
.
[4] Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, S. Yanagida, J. Alloys
Compd. 408 (2006) 669.
[
5] K. Takato, N. Gokan, M. Kaneko, J. Photochem. Photobiol. A: Chem. 169 (2005)
09.
4
. Conclusions
1
[
[
6] Y. Liu, C.F. Ye, G.D. Qian, J.R. Qiu, J. Lumin. 118 (2006) 158.
7] Y. Hasegawa, Y. Wada, S. Yanagida, J. Photochem. Photobiol. C: Photochem. Rev.
According to the data and discussion above, we have success-
5
(2004) 183.
fully prepared three kinds of Eu(III) complexes by using the UV
absorption reagents as ligands. TG curve prove the complexes are
[
8] K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Wada, S. Yanagida, J. Alloys
Compd. 408 (2006) 771.
◦
[9] K. Manseki, Y. Hasegawa, Y. Wada b, S. Yanagida, J. Alloys Compd. 408 (2006)
05.
10] K. Manseki, Y. Hasegawa, Y. Wada, S. Yanagida, J. Lumin. 111 (2005) 183.
[11] X. Jiang, Y. Wu, C. He, Mater. Lett. 62 (2) (2008) 286.
12] V. Tsaryuk, K. Zhuravlev, V. Kudryashova, V. Zolin, J. Legendziewicz, I. Pekareva,
P. Gawryszewska, J. Photochem. Photobiol. A: Chem. 197 (2008) 190.
13] K. Zhuravlev, V. Tsaryuk, V. Kudryashova, V. Zolin, Yu. Yakovlev, J. Leg-
endziewicz, Spectrochim. Acta Part A 72 (2009) 1020.
stable, ranging from ambient temperature to 200 C in air. The study
8
of luminescence properties shows that the complex Eu(TTA) 5NO2
3
[
Phen has the highest sensitized luminescent efficiency and the
longest lifetime than Eu(TTA) Dipy and Eu(TTA) (TPPO) . The
[
3
3
2
present study shows great promise for the design of a new type
electroluminescence device configuration.
[
[
[
[
14] S.L. Liu, C.L. Wen, C. Chen, S.S. Qi, E.X. Liang, Mater. Res. Bull. 43 (2008) 2397.
15] W. Wang, Y. Huang, N. Tang, Spectrochim. Acta Part A 66 (2007) 1058.
16] M.A. Katkova, V.A. Ilichev, A.N. Konev, I.I. Pestova, G.K. Fukin, M.N. Bochkarev,
Org. Electron. 10 (2009) 623.
Acknowledgments
This work was supported by emphasis research fund for Jia-
musi University (Szj2008-018), research fund for the Provincial Key
Laboratory of Biomaterials Jiamusi University (E08050204), Health
Commission of Hei Long Jiang Province(2009-360), Education Com-
[17] W.G. Quirino, C. Legnani, R.M.B. dos Santos, K.C. Teixeira, M. Cremona, M.A.
Guedes, Thin Solid Films 517 (2008) 1096.
[
[
18] Y.G. Lv, J.C. Zhang, W.L. Cao, Y.L. Fu, J. Alloys Compd. 462 (2008) 153.
19] Y.G. Lv, J.C. Zhang, W.L. Cao, F.J. Zhang, Z. Xu, J. Photochem. Photobiol. A: Chem.
188 (2007) 155.