234
C. Tidei et al. / Tetrahedron Letters 53 (2012) 232–234
O
PhSeZnCl H2O
H2O2
Ph
SePh
Ph
SePh
1
7
6
H2O
PhSeH Zn(OH)Cl
(T50 = 144 sec)
(T50 = 176 sec)
Scheme 3. Vinyl selenides 6, 7 and the corresponding T50 = time required to
convert DTTrid into DTTox by 50%.
PhSe
O
4
ZnCl
+H2O
-H2O
selenides. Biological assays will be performed to demonstrate the
effective correlation between the proposed catalytic mechanism
and an actual GPx-like activity at the cellular levels.
Zn(OH)Cl
PhSeOH
G-SH
G-SS-G
Acknowledgments
PhSeSG
ZnCl
G-SH
Financial support from Fondazione Cassa di Risparmio di
Perugia, Ricerca di Base 2010 – progetto 2010.011.0415, M.I.U.R.
H2O
5
Scheme 2. Proposed mechanism for GPx-like activity of 1.
(Ministero Italiano Università
e Ricerca), National Projects
PRIN2007 (Progetto di Ricerca d’Interesse Nazionale), Consorzio
CINMPIS, Bari (Consorzio Interuniversitario Nazionale di Metodol-
ogie e Processi Innovativi di Sintesi) are gratefully acknowledged.
by 50% (T50) can be conveniently used to compare GPx-like activ-
ities of different organoselenium compounds.
It is interesting to observe that 1 showed T50 (128 s) higher
References and notes
than the one of the dimer of the natural amino acid (
(64 s) but shorter than that of (PhSe)2 (192 s).
L-Sec)2
1. (a) Singh, F. V.; Wirth, T. In Organoselenium Chemistry; Wirth, T., Ed.; Wiley-
VCH: Weinheim, 2011; p 321. p. 321; (b) Santi, C.; Santoro, S. In Organoselenium
Chemistry; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2011. p. 1; (c) Freudendahl, D.
M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48,
8409–8411; (d) Wirth, T. Angew. Chem. Int. Ed. 2000, 39, 3740–3749; (e) Wirth,
T. Tetrahedron 1999, 55, 1–28; (f) Santi, C.; Santoro, S.; Battistelli, B. Curr. Org.
Chem. 2010, 14, 2442–2462.
This latter evidence suggests that PhSeZnCl does not simply act
as a precursor of the selenenic acid intermediate, which is the case
of diphenyl diselenide. Reasonably, a zinc containing Lewis acid
may play an active role in the catalytic cycle as proposed in Scheme
2. Similar experiments have been carried out using benzylthiol 2g
2. (a) Flohé, L.; Günzler, E. A.; Schock, H. H. FEBS Lett. 1973, 32, 132–134; (b)
Sarma, B. K.; Mugesh, G. Org. Biomol. Chem. 2008, 6, 965–974.
as oxidation probe in d-chloroform.15 While (
L-Sec)2 and (PhSe)2
3. (a) Mugesh, G.; du Mont, W.-W.; Sies, H. Chem. Rev. 2001, 101, 2125–2179; (b)
Bhabak, K. P.; Mugesh, G. Acc. Chem. Res. 2010, 43, 1408–1419; (c)
Satheeshkumar, K.; Mugesh, G. Chem. Eur. J. 2011, 17, 4849–4857.
4. Epp, O.; Ladenstein, R.; Wendel, A. Eur. J. Biochem. 1983, 133, 51–69.
5. (a) Santi, C.; Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M. Eur. J. Org. Chem.
2008, 5387–5390; (b) Santi, C. Phenylselenenylzinc halides. In Encyclopedia of
Reagents for Organic Synthesis; John Wiley & Sons Ltd, 2011. doi:10.1002/
gave results similar to that obtained in the experiment with 2d
in D2O, a very low catalytic activity was observed for PhSeZnCl that
was ascribed to its quite complete insolubility in d-chloroform.
The mechanism proposed in Scheme 2 is in agreement with the
evidence that a stoichiometric amount of zinc chloride increased
the catalytic activity of diphenyl diselenide in the oxidation of
GSH with hydrogen peroxide, [T50 (PhSe)2 = 3,75 h, T50
(PhSe)2 + ZnCl2 3,0 h, T50 PhSeZnCl 2,8 h] (for this latter result
see Fig. 2). These experiments were carried out pre-treating the
catalytic mixture with the H2O2 for 30 min before the thiol
addition.
6. Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
Angew Chem Int. Ed. 2005, 44, 3275–3279.
7. Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M.; Santi, C. Eur. J. Org. Chem.
2009, 4921–4925.
8. Salman, S. M.; Schwab, R. S.; Alberto, E. E.; Vargas, J.; Dornelles, L.; Rodrigues, O.
E. D.; Braga, A. L. Synlett 2011, 69–72.
During the screening of several organoselenium compounds, a
surprising and unexpected GPx-like activity has been observed
for some vinyl selenides that can be easily prepared starting from
1.9 Two selected examples (6 and 7) are reported in Scheme 3. Also
in these cases the GPx-like activity has been evaluated comparing
the corresponding T50 for the oxidation of DTT in D2O at 23 °C in
the presence of 1 equiv of H2O2 and 10% of catalyst [1,4⁄10À3N].
77Se-NMR investigations demonstrate that, in the case of these
compounds the intermediate is a selenoxide.
9. Battistelli, B.; Testaferri, L.; Tiecco, M.; Santi, C. Eur. J. Org. Chem. 2011, 1848–
1851.
10. Saxena, A.; Kumar, A.; Mozumdar, S. J. Mol. Catal. A: Chem. 2007, 269, 35–40.
11. Lenardao, E. J.; Lara, R. G.; Silva, M. S.; Jacob, R. G.; Perin, G. Tetrahedron Lett.
2007, 48, 7668–7670.
12. Walters, M. A.; Chaparro, J.; Siddiqui, T.; Williams, F.; Ulku, C.; Rheingold, A. L.
Inorg. Chim. Acta 2006, 359, 3996–4000.
13. Zolfigol, M. A. Tetrahedron 2001, 57, 9509–9511.
14. Kumakura, F.; Mishra, B.; Indira Priyadarsini, K.; Iwaoka, M. Eur. J. Org. Chem.
2010, 440–445.
15. Back, T. G.; Kuzma, D.; Parvez, M. J. Org. Chem. 2005, 70, 9230–9236.
Further investigations are now ongoing in order to define the
correlation between structure and catalytic activity of vinyl