C O M M U N I C A T I O N S
polyprolines can be efficiently functionalized in a differential way
using “click chemistry”. Upon functionalization the well-defined
PPII conformation is retained, thereby allowing for the positioning
of functional groups at desired sites. In light of the increasing
importance of molecular scaffolds,4 the presented Azp-containing
oligoprolines might serve as interesting new leads.
,5
Acknowledgment. This work was supported by the company
BACHEM by an endowed professorhip to H.W. and the Swiss
National Science Foundation as well as Ph.D. fellowships from
Novartis to M.K. and the Fonds der Chemischen Industrie to L.S.S.
We thank Prof. C. Ochsenfeld and S. Schweizer for generating the
molecular models, Prof. T. Kiefhaber for the use of his CD-
spectrometer, and him as well as Prof. J. Engel for useful
discussions.
Supporting Information Available: Experimental details on the
syntheses and analyses of compounds 2S and 2R-6R. This material
is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Stapley, B. J.; Creamer, T. P. Protein Sci. 1999, 8, 587-595. (b) Rath,
A.; Davidson, A. R.; Deber, C. M. Biopolymers (Pept. Sci.) 2005, 80,
179-185. (c) Shi, Z.; Chen, K.; Liu, Z.; Kallenbach, N. R. Chem. ReV.
Figure 3. (A) Model of an oligoproline PPII-helix with Azp residues in
every third position. (B) Functionalization of the 18-mer 3R using “click
chemistry”. (C) The 16-mer 6R prepared by successive peptide coupling
and cycloaddition steps.
2006, 106, 1877-1897.
(
2) (a) Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines,
R. T. J. Am. Chem. Soc. 2001, 123, 777-778. (b) DeRider, M. L.; Wilkens,
S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold, F.; Raines, R. T.;
Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497-2505. (c) Hodges, J.
A.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 9262-9263. (d)
Hinderacker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188-1194. (e)
Hodges, J. A.; Raines, R. T. Org. Lett. 2006, 8, 4695-4697.
Derivatization of the Azp containing oligoprolines can be expected
to influence the stability of the PPII and PPI conformations. CD-
spectra of 4R in aqueous buffer and n-PrOH are indicative of PPII
and PPI conformations, respectively, demonstrating that triazole
substituents still allow for adopting both helical structures (see
Supporting Information).
(3) (a) Thomas, K. M.; Naduthambi, D.; Tririya, G.; Zondlo, N. J. Org. Lett.
2
005, 7, 2397-2400. (b) Kim, W.; Hardcastle, K. I.; Conticello, V. P.
Angew. Chem., Int. Ed. 2006, 45, 8141-8145.
(
4) For reviews see: (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem.
ReV. 2001, 101, 3219-3232. (b) Seebach, D.; Beck, A. K.; Bierbaum, D.
J. Chem. BiodiVersity 2004, 1, 1111-1239. (c) Fletcher, S.; Hamilton,
A. D. Curr. Opin. Chem. Biol. 2005, 9, 632-638.
For many applications, functionalization of the polyproline
scaffold with different functional groups will be desirable. Thus,
we next focused on differential functionalization of oligoprolines
by successive peptide coupling and cycloaddition steps (Figure 3C).
Fmoc-Pro-(4R)Azp-Pro-OH 5R was coupled onto proline-func-
tionalized rink amide resin followed by a “click-reaction” using
methyl propiolate. After a second coupling of 5R, a cycloaddition
using phenylacetylene was performed. Third, fourth, and fifth cycles
followed with 4-ethynylanisole, phenylacetylene, and methyl pro-
piolate as alkynes. The “click chemistry” steps were monitored by
IR spectroscopy and were complete within 12 h, except for the
cycloaddition of 4-ethynylanisole, which had to be repeated twice.
The 16-mer 6R was removed from the resin with a purity of the
crude product of ∼60% (after 12 synthesis steps) as judged by
HPLC. CD-Spectroscopic analysis of purified 6R showed spectra
indicative of a PPII-conformation in aqueous buffer and a PPI
conformation in n-PrOH (see Supporting Information).
In summary, the presented work is the first study where azido
groups are used both as conformation directing elements and as
sites for further functionalization. Incorporation of (4R)Azp into
oligoprolines stabilizes, whereas (4S)Azp destabilizes the PPII
conformation. (4R)Azp and (4S)Azp might therefore serve as
valuable tools to tune the conformational stability of the PPII helix
for studying biological processes where the PPII conformation plays
a role. Furthermore, we have demonstrated that Azp containing
(
5) For examples see: (a) Farrera-Sinfreu, J.; Giralt, E.; Castel, S.; Albericio,
F.; Royo, M. J. Am. Chem. Soc. 2005, 127, 9459-9468. (b) Fillon, Y.
A.; Anderson, J. P.; Chmielewski, J. J. Am. Chem. Soc. 2005, 127, 11798-
1
1803. (c) Yin, H.; Lee, G.-i.; Park, H. S.; Payne, G. A.; Rodriguez, J.
M.; Sebti, S. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 2704-
2
707. (d) Stephens, O. M.; Kim, S.; Welch, B. D.; Hodsdon, M. E.; Kay,
M. S.; Schepartz, A. J. Am. Chem. Soc. 2005, 127, 13126-13127. (e)
Sadowsky, J. D.; Schmitt, M. A.; Lee, H.-S.; Umezawa, N.; Wang, S.;
Tomita, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 11966. (f) Patch,
J. A.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 12092-12093. (g)
Choi, S.; Clements, D. J.; Pophristic, V.; Ivanov, I.; Vemparala, S.;
Bennett, J. S.; Klein, M. L.; Winkler, J. D.; DeGrado, W. F. Angew. Chem.,
Int. Ed. 2005, 44, 6685-6689.
(
6) For example: (a) Kakinoki, S.; Hirano, Y.; Oka, M. Polym. Bull. 2005,
53, 109-115. (b) Rabanal, F.; Ludevid, M. D.; Pons, M.; Giralt, E.
Biopolymers 1993, 33, 1019-1028.
(7) (a) Mutter, M.; W o¨ hr, T.; Gioria, S.; Keller, M. Biopolymers 1999, 51,
121-128. (b) Engel, J.; Schwarz, G. Angew. Chem., Int. Ed. 1970, 9,
389-400.
(8) Sonntag, L.-S.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. J. Am.
Chem. Soc. 2006, 128, 14697-14703.
(
9) Furthermore, the maximum at 225 nm, most indicative of the PPII
conformation (Woody, R. W. AdV. Biophys. Chem. 1992, 2, 37-79) is
significantly higher in the spectrum of 2R in aqueous buffer compared to
those of 2S and unmodified Ac-[Pro]
9
-OH. This further supports the higher
propensity of 2R to adopt the PPII conformation.
(
10) Horng, J.-C.; Raines, R. T. Protein Sci. 2006, 15, 74-83.
(11) For a recent review see: Br a¨ se, S.; Gil, C.; Knepper, K.; Zimmermann,
V. Angew. Chem., Int. Ed. 2005, 44, 5188-5240.
(
12) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596-2598. (b) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-3064.
JA067148O
J. AM. CHEM. SOC.
9
VOL. 129, NO. 3, 2007 467