JOURNAL OF CHEMICAL RESEARCH 2012 397
Table 1 Ring opening of epoxides with NH4SCN and NaN3
General experimental procedure
NH4SCN or NaN3 (3 mmol)was added to the suspension of an epoxide
(1mmol)and1, 1′-Bis-methyl-3, 3′-methylene-bisimidazoliumdichlo-
ride (0.5 g) in water (5.0 mL). The mixture was stirred at room tem-
perature for the time shown in Table 1. The reaction was monitored by
TLC (n-hexane: ethyl acetate; ratio=5:1). After the reaction was com-
plete, the product was extracted with EtOAc (3 × 10 mL). The organic
phase was collected and washed with water; dried over Na2SO4, and
evaporated in vacuo to give desired product.
Entry
Epoxide
Producta
X
Time Yield
/min /%b
2-Azido-2-phenyl-1-ethanol (1a): IR (νmax/cm−1): 3373 (OH), 2102
1
(N3). HNMR (400 MHz, CDCl3): δ = 3.37 (1H, s, OH), 3.74 (2H,
m, CH2), 4.65–4.69 (1H, m, CH), 7.34–7.44 (5H, m, ArH) ppm. 13C
NMR (100 MHz, CDCl3): δ = 66.37 (CHN3), 68.03 (CH2OH), 127.49
(m-CH), 128.46 (o-CH), 128.61 (p-CH), 136.47 (C) ppm.
1a
1b
N3
40
85
82
SCN 45
2-Hydroxy-1-phenylethyl thiocyannate (1b): IR (νmax/cm−1): 3419
(OH), 2151 (SCN); 1HNMR (400 MHz, CDCl3): δ = 4.15–4.32
(1H, m, CHSCN), 4.42 (1H, m, CH2), 4.62 (1H, m, CH2), 4.85 (1H,
s, OH), 7.32–7.52 (5H, m, ArH) ppm. 13C NMR (100 MHz, CDCl3):
δ = 46.34 (CH), 59.70 (CH2OH), 110.58 (SCN), 128.57 (m-CH),
129.83 (p-CH), 129.94 (o-CH), 137.43 (C) ppm.
2a
2b
N3
35
95
87
SCN 40
3a
3b
N3
30
92
80
3-Phenoxy-2-hydroxypropyl thiocyanate (2b): IR (νmax/cm−1): 3435
1
(OH), 2156 (SCN); HNMR (400 MHz, CDCl3): δ = 3.30 (2H, d,
SCN 60
CH2SCN), 3.78 (1H, s, OH), 4.15 (2H, d, OCH2), 4.29 (1H, m,
CHOH), 6.95 (2H, m, ArH), 7.02 (1H, m, ArH), 7.28 (2H, m, ArH)
ppm. 13C NMR (100 MHz, CDCl3): δ = 37.4 (CH2SCN), 68.1 (CHOH),
69.5 (OCH2), 113.0 (SCN), 114.6 (o-CH), 121.3 (p-CH), 129.9
(m-CH), 158.5 (C) ppm.
4a
4b
N3
10
87
85
SCN 15
3-Allyloxy-2-hydroxypropyl thiocyanate (3b): IR (νmax/cm−1): 3440
(OH), 2156 (SCN); 1H NMR (400 MHz, CDCl3): δ = 3.04–3.24 (3H,
m, OH, CH2SCN), 3.53 (2H, d, OCH2), 4.05 (3H, m, OCH2CHOH),
5.19–5.29 (2H, m, =CH2), 5.87 (1H, m, =CH) ppm. 13C NMR
(100 MHz, CDCl3): δ = 37.3 (CH2SCN), 69.2 (CH2O), 71.1 (CHOH),
71.6 (OCH2), 113.1 (SCN), 117.5 (CH2=), 133.7 (=CH) ppm.
1-Azido-3-butoxypropan-2-ol (5a): IR (νmax/cm−1): 3445 (OH), 2102
5a
5b
N3
15
96
80
SCN 65
6a
6b
N3
20
80
90
SCN 15
1
(N3); HNMR (400 MHz, CDCl3): δ = 0.87 (3H, t, CH3), 1.31–1.35
(2H, m, CH2), 1.50–1.53 (2H, m, CH2), 3.14 (1H, s, OH), 3.30–3.32
(2H, m, CH2N3), 3.39–3.44 (4H, m, CH2OCH2), 3.87 (1H, m, CHOH)
ppm. 13C NMR (100 MHz, CDCl3): δ = 13.78 (CH3), 19.16 (CH2),
30.74 (CH2), 53.52 (CH2N3), 69.74 (CH2O), 70.59 (CHOH), 70.71
(OCH2CH) ppm.
7a
7b
N3
20
80
82
SCN 50
a Products were identified by comparison of their physical and
spectroscopic data with those of authentic samples.11,19,21–23
bIsolated yields.
Received 6 March 2012; accepted 16 April 2012
Paper 1201200 doi: 10.3184/174751912X13371750612188
Published online: 26 June 2012
as nucleophiles in the presence of 1,1′-bis-methyl-3, 3′-methy-
lenebisimidazolium dichloride. Shorter reaction times, sim-
plicity in operation, the low cost of reagents and high yields of
products can be considered as an advantage of this method.
References
1
N. Jain, A. Kumar, S. Chauhan and S.M.S. Chauhan, Tetrahedron, 2005,
61, 1015.
2
3
J. Dupont, R.F. de Souza and P.A.Z. Suarez, Chem. Rev., 2002, 102, 3667.
M. Petkovic, K.R. Seddon, L.P.N. Rebelo and C.S. Pereira, Chem. Soc.
Rev., 2011, 40, 1383.
Experimental
Chemical were purchased fromAldrich and Merck Chemical compan-
ies and used without further purification. The synthesis of the IL was
carried out in a microwave oven with a 2500 W power (MicroSynth,
Milestone) equiped with a condenser. Products were characterised by
comparison of their physical data, IR and 1H NMR spectra with known
samples. NMR spectra were recorded in CDCl3 or DMSO on a Bruker
Advance DPX 400 MHz instrument spectrometer using TMS as an
internal standard. IR spectra were recorded on a BOMEM MB-Series
1998 FT-IR spectrometer. The purity of the products and reaction
monitoring were followed by TLC on silica gel polygram SILG/UV
254 plates.
4
5
6
N.L. Lancaster, J. Chem. Res., 2005, 413.
N.V. Plechkova and K.R. Seddon, Chem. Soc. Rev., 2008, 37, 123.
C.M. Starks, C.L. Liotta and M.E. Halpern, Phase-transfer catalysis,
Chapman & Hall, NewYork, 1994.
T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.
S. Muthusamy and B. Gnanaprakasam, Tetrahedron Lett., 2005, 46, 635.
S. Okamoto, K. Takano, T. Ishikawa, S. Ishigami and A. Tsuhako,
Tetrahedron Lett., 2006, 47, 8055.
7
8
9
10 H. Olivier-Bourbigou, L. Magna and D. Morvan, Appl. Catal. A., 2010,
373, 1.
11 A.R. Kiasat, R. Badri, B. Zargar and S. Sayyahi, J. Org. Chem., 2008, 73,
8382.
12 M. Gorjizadeh and S. Sayyahi, Chin. Chem. Let., 2011, 22, 300.
13 A.R. Kiasat and S. Sayyahi, Catal. Commun., 2010, 11, 484.
14 S. Sayyahi and J. Saghanezhad, Chin. Chem. Let., 2011, 22, 300.
15 S. Bonollo, D. Lanari and L. Vaccaro, Eur. J. Org. Chem., 2011, 2587.
16 G. Sabitha, R.S. Babu, M. Rajkumar and J.S. Yadav, Org. Lett., 2002, 4,
343.
17 A.R. Kiasat and M. Zayadi, Catal. Commun., 2008, 9, 2063.
18 J.S. Yadav, B.V.S. Reddy and C.S. Reddy, Tetrahedron Lett., 2004, 45,
1291.
Synthesis of 1,1′-bis-methyl-3, 3-methylenebisimidazolium dichloride
A mixture of 1-methylimidazole (0.06 mol, 5.0 g) and dichlorometh-
ane (0.03 mol, 2.54 g) was placed in a 50 mL round-bottomed flask
equipped with a magnetic stirrer and subjected to microwave irradia-
tion (200W) under reflux condition for 15 minutes. After cooling
to room temperature, the precipitate was filtered off and washed
twice with 10 mL of dry THF. After drying for 12 h under vacuum at
80 °C, the expected ionic liquid was obtained as white solid; Yield
19 A.R. Kiasat and M. Fallah-Mehrjardi, J. Braz. Chem. Soc., 2008, 19,
1595.
1
20 A.R. Kiasat and M. Fallah-Mehrjardi, Catal. Commun., 2008, 9, 1497.
21 R. Eisavi, B. Zeynizadeh and M.M. Baradaran, Bull. Korean Chem. Soc.,
2011, 32, 630.
22 B. Das, V.S. Reddy, M. Krishnaiah and Y.K. Rao, J. Mol. Catal, A: Chem.,
2007, 270, 89.
23 S.-W. Chen, S.S. Thakur, W. Li, C.-K. Shin, R.B. Kawthekar and
G.-J. Kim, J. Mol. Catal, A: Chem., 2006, 259, 116.
48%; m.p. 73–75 ºC; H NMR (400 MHz, DMSO-d6, 25 ºC): δ 3.90
(6H, s, 2NCH3), 6.86 (2H, s, NCH2), 7.81 (2H, s, 2NCH), 8.22 (2H, s,
2NCH), 9.80 (2H, s, 2NCHN) ppm. 13C NMR (100 MHz, DMSO-d6,
25 ºC): δ 36.65 (NCH3), 58.04 (NCH2N), 122.49 (NCH), 124.64
(NCH) 138.62 (NCHN) ppm. Analyses: Calcd for C9H14Cl2N4: C,
43.39; H, 5.66; N, 22.49. Found: C, 43.27; H, 5.70; N, 22.61%.