J IRAN CHEM SOC
2. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005)
3. S.I. Park, J.H. Kim, J.H. Lim, C.O. Kim, Curr. Appl. Phys. 8,
706–709 (2008)
Table 4 Comparison of catalytic ability of catalysts
Entry Catalyst/solvent/
temperature
Reaction
time (h)
Yield
%
References
4. T. Hyeon, Chem. Commun. 927–934 (2003)
5. A. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spli-
¨
1
2
3
Network polymer/water/ 1.5
80 °C
89
89
[21]
[23]
[25]
ethoff, B. Tesche, E. Bill, W. Kiefer, F. Schu¨th, Angew. Chem.
116, 4403–4406 (2004)
6. S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett,
Angew. Chem. 116, 5763–5766 (2004)
7. V. Polshettiwar, R.S. Varma, Green Chem. 12, 743–754 (2010)
SiO2-OPEG(300)/water/
reflux
2
[bmim]PF6([bmim]BF4)/ 3 (5)
water/65 °C
95
(89)
˘
¨
8. E. Karaoglu, A. Baykal, M. Senel, H. Sozeri, M.S. Toprak, Mater.
Res. Bull. 47, 2480–2486 (2012)
4
5
6
7
b-Cyclodextrin/water/r.t.
5
5
45
96
94
90
[27]
9. Y. Zhang, C. Xia, Appl. Catal. A: General 366, 141–147 (2009)
10. A.R. Kiasat, S. Nazari, J. Mol. Catal. A: Chem. 365, 80–86
(2012)
11. M. Kooti, M. Afshari, Mater. Res. Bull. 47, 3473–3478 (2012)
12. M.Z. Kassaee, H. Masrouri, F. Movahedi, Appl. Catal. A: Gen-
eral 395, 28–33 (2011)
AMP/Acetonitrile/r.t.
[28]
Polymeric PTC/water/r.t. 12
c-Fe2O3@HAp-Ni2?
water/80 °C
[29]
/
20 min
This work
13. R. Abu-Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal.
349, 2145–2150 (2007)
AMP ammonium-12-molybdophosphate, polymeric PTC poly[N-(2-
aminoethyl)acrylamido]-trimethyl ammonium iodide
14. Y.Y. Jiang, C. Guo, H.S. Xia, I. Mahmood, C.Z. Liu, H.Z. Liu, J.
Mol. Catal. B Enzym. 58, 103–109 (2009)
15. X.X. Zheng, S.Z. Luo, L. Zhang, J.P. Cheng, Green Chem. 11,
455–458 (2009)
16. A. Taber, J.B. Kirn, J.Y. Jung, W.S. Ahn, M.J. Jin, Synlett 15,
2477–2482 (2009)
Table 5 The catalytic activity of c-Fe2O3@HAp-Ni2? in seven
cycles
17. Q. Zhang, H. Su, J. Luo, Y.Y. Wei, Green Chem. 14, 201–208
(2012)
Run
1
2
3
4
5
6
7
18. S.W. Chen, S.S. Thakur, W. Li, C.K. Shin, R.B. Kawthekar, G.J.
Kim, J. Mol. Catal. 259, 116–120 (2006)
Yield (%)
90
90
88
86
87
85
85
19. J.S. Yadav, B.V.S. Reddy, A.K. Basak, A.V. Narsaiah, Tetrahe-
dron Lett. 44, 1047–1050 (2003)
20. B.T. Smith, V. Gracias, J. Aube, J. Org. Chem. 65, 3771–3774
(2000)
Conclusion
In this research, Ni2? supported on hydroxyapatite-core-
shell magnetic c-Fe2O3 nanoparticles was readily synthe-
sized and functionalized with Ni2?. We described a simple
and highly efficient protocol for the regioselective azidol-
ysis of epoxides. The advantages of the present procedure
are its simplicity of operation, very short reaction times in
comparison to the other procedures, and the high yields of
products. In this way, the catalyst can be easily recovered
by simple magnetic decantation and reused several times
with no loss of activity.
21. A. Mouradzadegun, A.R. Kiasat, P. Kazemian Fard, Catal.
Commun. 29, 1–5 (2012)
22. F. Heidarizadeh, A. Zarei, J. Chem. Soc. Pak. 34, 593–598 (2012)
23. A.R. Kiasat, M. Zayadi, Catal. Commun. 9, 2063–2067 (2008)
24. F. Kazemi, A.R. Kiasat, S. Ebrahimi, Synth. Commun. 33,
999–1004 (2003)
25. J.S. Yadav, B.V. Reddy, B. Jyothirmai, M.S.R. Murty, Tetrahe-
dron Lett. 46, 6559–6562 (2005)
26. K. Donadel, D.V. Marcosand, C.M. Mauro, An. Acad. Bras.
ˆ
Ciens. 81, 179–186 (2009)
27. A. Kamal, M. Arifuddin, M.V. Rao, Tetrahedron Asymmetry 10,
4261–4264 (1999)
28. B. Das, V.S. Reddy, M. Krishnaiah, Y.K. Rao, J. Mol. Catal. A:
Chem. 270 89–92 (2007)
29. B. Tamami, H. Mahdavi, Tetrahedron Lett. 42, 8721–8724 (2001)
Acknowledgments The authors gratefully acknowledge partial
support of this work by Ilam Payame Noor University, Islamic
Republic of Iran.
References
1. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyaj-
ima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 65,
245–251 (1987)
123