Journal of the American Chemical Society
Communication
(3) 1,3,5-Triazine-based dehydrocondensing agents work in an
aqueous solvent. See: (a) Kunishima, M.; Kawachi, C.; Morita, J.;
Terao, K.; Iwasaki, F.; Tani, S. Tetrahedron 1999, 55, 13159.
(b) Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S.
Tetrahedron 2001, 57, 1551. (c) Kunishima, M.; Yoshimura, K.;
Morigaki, H.; Kawamata, R.; Terao, K.; Tani, S. J. Am. Chem. Soc.
2001, 123, 10760. (d) Kunishima, M.; Imada, H.; Kikuchi, K.; Hioki,
K.; Nishida, J.; Tani, S. Angew. Chem., Int. Ed. 2005, 44, 7254.
(4) (a) Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie
Academic and Professional: London, 1998. (b) Lindstrom, U. M.
Chem. Rev. 2002, 102, 2751. (c) Li, C.-J. Chem. Rev. 2005, 105, 3095.
(5) (a) Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. Science
2004, 303, 186. (b) Ringe, D.; Petsko, G. A. Science 2008, 320, 1428.
(c) Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G. Chem.
Rev. 2006, 106, 3188. (d) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang,
Y.; Liu, H.; Olsson, M. H. M. Chem. Rev. 2006, 106, 3210.
(e) Koshland, D. E. Jr. Proc. Natl. Acad. Sci. U.S.A. 1958, 44, 98.
(f) Pauling, L. Nature 1948, 161, 707.
generate oxyanion intermediate 5 [step (ii)]. Presumably, this
step is facilitated by cage 1 because the cationic charge of the
cage can stabilize the anionic intermediate.14 The loss of water
via intermediate 6 should readily occur within the hydrophobic
cavity to give dehydrated product 4 [step (iii)]. The product 4
is too large for the cavity and is spontaneously released from
the cage [step (iv)] to be replaced with a new incoming
molecule of 2.
Oxyanion intermediate 5 [step (ii)] is effectively stabilized by
the Pd2+ centers located at every portal of the cage. If it is
assumed that the nucleophilic addition of 3 occurs around a
portal, the anionic intermediate 5 is most effectively stabilized
by the three Pd2+ centers sitting at the vertices of the roughly
triangular shaped portal (see the proposed geometry of 5 in
Figure 3). A control experiment was performed with bowl-
shaped cage 7 that has a 12+ net charge and the same formula
as cage 1 but does not have the closely arranged Pd2+ centers
around its open cavity. Although efficient host−guest complex-
ation was observed with cage 7 [to form the inclusion complex
7·(2a)3], even with a stoichiometric amount of 7, the
Knoevenagel condensation product 4a was obtained in only
17% yield under the same conditions (H2O, room temperature,
2 h).
̀
(6) (a) Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.;
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005,
105, 1445. (b) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc.
Rev. 2008, 37, 247. (c) Yoshizawa, M.; Klosterman, J. K.; Fujita, M.
Angew. Chem., Int. Ed. 2009, 48, 3418. (d) Wiester, M. J.; Ulmann, P.
A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114. (e) Pinacho
́ ́
Crisostomo, F. R.; Lledo, A.; Shenoy, S. R.; Iwasawa, T.; Rebek, J. Jr. J.
Am. Chem. Soc. 2009, 131, 7402. (f) Hof, F.; Craig, S. L.; Nuckolls, C.;
Rebek, J. Jr. Angew. Chem., Int. Ed. 2002, 41, 1488. (g) Kirby, A. J.
Angew. Chem., Int. Ed. Engl. 1996, 35, 708.
(7) (a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007,
316, 85. (b) Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am.
Chem. Soc. 2009, 131, 17530. (c) Hastings, C. J.; Pluth, M. D.;
Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2010, 132, 6938.
(d) Fiedler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J.
Am. Chem. Soc. 2006, 128, 10240. (e) Pluth, M. D.; Bergman, R. G.;
Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.
(8) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 7th ed.;
Freeman: New York, 2011; p 267.
In summary, we have successfully demonstrated dehydration
condensation under neutral conditions in water catalyzed by
synthetic cationic host 1. Following the efficient binding of the
substrate in the hydrophobic cavity, the condensation reaction
seems to be facilitated by the stabilization of the anionic
intermediate in the cationic environment of the cage,
reminiscent of the tricks of enzyme catalysis. Further
development of catalytic reactions by using cage 1 as a
synthetic mimic of enzymes is currently under investigation.
(9) For reactions within cage 1, see: (a) Yoshizawa, M.; Tamura, M.;
Fujita, M. Science 2006, 312, 251. (b) Nishioka, Y.; Yamaguchi, T.;
Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000.
(c) Horiuchi, S.; Nishioka, Y.; Murase, T.; Fujita, M. Chem. Commun.
2010, 46, 3460. (d) Murase, T.; Horiuchi, S.; Fujita, M. J. Am. Chem.
Soc. 2010, 132, 2866. (e) Horiuchi, S.; Murase, T.; Fujita, M. Chem.
Asian J. 2011, 6, 1839.
(10) Unlike naphthaldehyde 2a, two molecules of anthraldehyde 2b
are encapsulated within cage 1.
(11) Since droplets of benzaldehyde 2d dissolve compound 3, the
condensation may take place in dispersed 2d.
ASSOCIATED CONTENT
■
(12) (a) McNab, H. Chem. Soc. Rev. 1978, 7, 345. (b) Wang, X.;
Houk, K. N. J. Am. Chem. Soc. 1988, 110, 1870. (c) Wiberg, K. B.;
Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 1872. (d) Nakamura, S.;
Hirao, H.; Ohwada, T. J. Org. Chem. 2004, 69, 4309.
S
* Supporting Information
Experimental procedures and physical properties. This material
(13) Interactions between the outside of cage 1 and compound 3 are
also negligible because the pH value of 3 in water did not change after
the addition of cage 1.
(14) Knoevenagel condensation is accelerated by rare-earth-
exchanged NaY zeolites, where electrostatic interactions between the
embedded cations and the encapsulated substrates play an important
role. See: Reddy, T, I.; Varma, R, S. Tetrahedron Lett. 1997, 38, 1721.
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
This research was supported in part by the Global COE
Program “Chemistry Innovation through Cooperation of
Science and Engineering” from MEXT, Japan.
REFERENCES
(1) Li, C.-J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68.
(2) (a) Manabe, K.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2001,
123, 10101. (b) Kobayashi, S.; Iimura, S.; Manabe, K. Chem. Lett.
2002, 31, 10. (c) Manabe, K.; Iimura, S.; Sun, X.-M.; Kobayashi, S. J.
Am. Chem. Soc. 2002, 124, 11971.
■
164
dx.doi.org/10.1021/ja210068f | J. Am. Chem.Soc. 2012, 134, 162−164