Journal of the American Chemical Society
Page 4 of 5
observations implied that the sulfonylpalladation of styrenes
should not be involved in the catalytic cycle.
ACKNOWLEDGMENT
We are grateful for financial support from 973 program (No.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Based on above analysis, the proposed mechanism was
illustrated in Scheme 3: the initial oxidation of cationic
2
011CB808700), NSFC (Nos. 21225210, 21202185, 21421091
and 21121062) and the CAS/SAFEA International Partnership
Program for Creative Research Teams.
2
+
2+
[
(L4) Pd] by NFSI provided [(L4) Pd(F)N(SO Ph) ] , which
2 2 2 2
could react with arylsulfinic acid via a SET process to generate
III
14,15
REFERENCES
ArSO radical and (L4) Pd F species.
The former could react
2
2
with styrene to give benzylic radical species, which directly attack
III
Pd F complex to give the fluorination product (dash line).
III
Alternatively, the benzylic radical could also be trapped by Pd F
IV
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
complex to give alkylꢀPd F species, which undergoes direct
reductive elimination to form CꢀF bond selectively (plain cycle).
The first order on the [Pd] and NFSI revealed that the oxidation of
palladium catalyst occurs as turnꢀover limiting step. For the CꢀF
bond forming step, it is difficult to differentiate above two
possible mechanisms at this stage. Compared to good
(1) a) Fromtling, R. A. Drugs. Future. 1989, 14, 1165. b) Oida, S.;
Tajiam, Y.; Konosu, T.; Nakamura, Y.; Somada, A.; Tanaka, T.; Habuki,
S.; Harasaki, T.; Kamai, Y.; Fukuoka, T.; Ohya, S.; Yasuda, H. Chem.
Pharm. Bull. 2000, 48, 694.
(
2) a) Willems, E.; Vries, P. De; Heiligers, J. P. C.; Saxena, P. R.
Naunyn Schmiedeberg's Arch. Pharmacol. 1998, 358, 212. b) Lee, M.;
Ikejiri, M.; Klimpel, D.; Toth, M.; Espahbodi, M.; Hesek, D.; Forbes, C.;
Kumarasiri, M.; Noll, B. C.; Chang, M.; Mobashery, S. ACS Med. Chem.
Lett. 2012, 3, 490.
V
diastereoselectivity (d.r. ~10:1) from highꢀvalent (TMP)Mn F
8
species, Governeur recently demonstrated that
a tandem
stereospecific cisꢀhydropalladation and direct reductive
(3) For some recent examples, see: a) Liu, Q.; Zhang, J.; Wei, F.; Qi, Y.;
IV
elimination of Pd (F)R complex for hydrofluorination of styrenes
Wang, H.; Liu, Z.; Lei, A. Angew Chem., Int. Ed. 2013, 52, 7156. b) Liu,
Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. J. Am. Chem.
Soc. 2013, 135, 11481. c) Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Chem.
Commun. 2014, 50, 4115. d) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu,
W.; Jiang, H. Angew Chem., Int. Ed. 2014, 53, 4205.
16,17
could dilever excellent diastereoselectivity (d.r. >20:1).
Thus,
we though the current fluorosulfonylation reaction is more likely
IV
to involve
a
(L4) Pd (F)R species for highly selective
2
III
fluorination, and the bezylic radical is possibly trapped by Pd
species on the opposite side of sulfonyl group with high
selectivity due to the steric hindrance of ligand L4.
(
4 ) a) Hiyama, T. Organofluorine Compounds: Chemistry and
Applications; Springer: Berlin, 2000. (7). b) Ojima, I. Fluorine in Medical
Chemistry and Chemical Biology; WileyꢀBlackwell, U.K., 2009.
(
5) For radical fluorination process, see: a) Sibi, M. P.; Landais, Y.;
Angew. Chem. Int. Ed. 2013, 52, 3570. b) Xia, J.ꢀB.; Zhu, C.; Chen, C. J.
Am. Chem. Soc. 2013, 135, 17494. c) RuedaꢀBecerril, M.; Sazepin, C. C.;
Leung, J. C. T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J.ꢀF.; Sammis, G.
M. J. Am. Chem. Soc. 2012, 134, 4026. d) Bloom, S.; Pitts, C. R.; Miller,
D. C.; Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T. Angew. Chem.
Int. Ed. 2012, 51, 10580.
Scheme 3. Proposed Mechanism.
(6) a) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem.
Soc. 2013, 135, 14082. b) Li, Z.; Song, L.; Li, C.; J. Am. Chem. Soc. 2013,
1
35, 4640. c) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew.
Chem. Int. Ed. 2014, 53, 11079.
7) a) Baker, T. J.; Boger, D. L.; J. Am. Chem. Soc. 2012, 134, 13588. b)
Shigehisa, H.; Nishi, E.; Fujisawa, M.; Hiroya, K. Org. Lett. 2013, 15,
158.
8) a) Liu, W.; Huang, X.; Cheng, M.ꢀJ.; Nielsen, R. J.; Goddard III, W.
(
5
(
A.; Groves, J. T. Science 2012, 337, 1322. b) Huang, X.; Liu, W.; Ren, H.;
Neelamegam, R.; Hooker, J. M.; Groves, J. T. J. Am. Chem.
Soc. 2014, 136, 6842.
(9) a) Liu, G. Org. Biomol. Chem. 2012, 6243. b) Wu, T.; Yin, G.; Liu,
G. J. Am. Chem. Soc. 2009, 131, 16354. c) Wu, T.; Cheng, J.; Chen, P.;
Liu, G. Chem. Commun. 2013, 49, 8707. d) Zhu, H.; Liu, G. Acta. Chim.
Sinica. 2012, 70, 2404.
In conclusion, we have developed a Pdꢀcatalyzed antiꢀselective
intermolecular fluorosulfonylation of styrenes. The reaction
exhibits excellent regioꢀ and diasteroselectivity to provide various
vicinal fluorinated sulfone products. Preliminary mechanistic
study reveals that the radical species is involved, but significantly
different with previous radical fluorination process. Instead, the
(10) a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.ꢀL.; Liu, G. J. Am. Chem. Soc.
2
010, 132, 2856. b) Peng, H.; Yuan, Z.; Wang, H.ꢀY.; Guo, Y.ꢀL.; Liu, G.
Chem. Sci. 2013, 4, 3172.
11) For the internal substrates, ligand L4 provided a better yield than
L3. For product 5e, 57% yield was given by L3, and 64% by L4.
(
(
(
12) See the Supporting Information (SI) for detail.
13 ) With [(L4) Pd] (OTf) (3 mol %) as catalyst, the reactions
2 2
III
sideꢀselectively combination of benzylic carbon radical with Pd
2+
IV
complex and the direct reductive elimination of L Pd (F)R
afforded product 4j in 80% yield, 5g in 65% yield (>20:1 d.r.) and 5h in
60% yield (>20:1 d.r.). For more detail, see the SI.
2
intermediate was proposed to address the high diastereoselectivity.
We envisioned that this unusual pathway may be operational in
other alkene difunctionalization reactions.
II
IV
III
2
(14) For the oxidation of L Pd by NFSI and from Pd to Pd via SET
process, see: a) Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.;
Ritter, T. J. Am. Chem. Soc. 2013, 135, 14012. b) Boursalian, G. B.; Ngai,
M.ꢀY.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278.
Supporting Information
2
(15) In this reaction, the ArSO radical is efficiently generated in the
Synthetic procedures, characterization and additional data. This
material is available free of charge via the Internet at
http://pubs.acs.org.
presence of palladium catalyst. For more discussions, see the SI.
(16) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem.
Int. Ed. 2014, 53, 4181.
(17) For the evidence for selective reductive elimination of highꢀvalent
Corresponding Author
metal fluoride complexes, see: a) Zhao, S.ꢀB.; Becker, J. J.; Gagńe, M. R.
Organometallics 2011, 30, 6039. b) Mankad, N. P.; Toste, F. D. Chem. Sci.
2
012, 3, 72.
ACS Paragon Plus Environment