T. O. Olomola et al. / Tetrahedron Letters 51 (2010) 6325–6328
6327
21. Kempf, D. J.; Marsh, K. C.; Denissen, J. F.; Mcdonald, E.; Vasavanonda, S.;
Flentge, C. A.; Green, B. E.; Fino, L.; Parks, C. H.; Kong, X.-P.; Wideburg, N. E.;
Saldivar, A.; Ruiz, L.; Kati, W. M.; Sham, H. L.; Robins, T.; Stewart, K. D.; Hsu, A.;
Plattner, J. J.; Leonard, J. M.; Norbeck, D. W. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
2484–2488.
22. Wlodawer, A.; Vondrasek, J. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 249–
284.
23. Ren, J.; Nichols, C.; Bird, L. E.; Fujiwara, T.; Sugimoto, H.; Stuart, D. I.; Stammers,
D. K. J. Biol. Chem. 2000, 275, 14316–14320.
24. Lindberg, J.; Sigurdsson, S.; Lowgren, S.; Andersson, H. O.; Sahlberg, C.; Noreen,
R.; Fridborg, K.; Zhang, H.; Unge, T. Eur. J. Biochem. 2002, 269, 1670–1677.
25. Furman, P. A.; Fyfe, J. A.; St. Clair, M. H.; Weinhold, K.; Rideout, J. L.; Freeman, G.
A.; Lehrman, S. N.; Bolognesi, D. P.; Broder, S.; Mitsuya, H.; Barry, D. W. Proc.
Natl. Acad. Sci. U.S.A. 1986, 83, 8333–8337.
26. Schneider, B.; Biondi, R.; Sarfati, R.; Agou, F.; Guerreiro, C.; Deville-Bonne, D.;
Veron, M. Mol. Pharmacol. 2000, 57, 948–953.
27. De Clercq, E. Int. J. Antimicrob. Agents 2009, 33, 307–320.
28. General procedures for the synthesis and characterisation of compounds 8a–e and
10a–e are as follows.
indicate the possibility of their acting as non-nucleoside RT inhib-
itors (NNRTIs). The nucleoside analogue (NRTI) pro-drug AZT 9,
however, is incorporated, following in vivo triphosphorylation,25
into the transcribed DNA being generated in the RT active site. It
has been suggested that the azido group in AZT 9 may interfere ste-
rically with the phosphorylation process,26 and it is possible that
similar steric constraints may preclude the ligands 10a–e from act-
ing as NRTI pro-drugs. However, prior in vitro phosphorylation [as
effected in the nucleotide analogue (NtRTI) tenofovir27] might well
permit phosphorylated derivatives of compounds 10a–e to act at
the RT active site. Ongoing studies are focusing on: functional elab-
oration of the coumarin-AZT scaffold in compounds of type 10; en-
zyme–inhibition assays of the synthetic ligands; and use of the
resulting SAR data in the development of novel, dual-action HIV-
1 PR and RT inhibitors.
3-[(2-Propynylamino)methyl]coumarin (8a). Propargylamine (7) (0.6 mL,
In conclusion, the 3-(chloromethyl)coumarins 6a–e, obtained
via Baylis–Hillman methodology, have been successfully reacted
with propargylamine (7) to afford compounds 8a–e, which have
been used, in turn, as substrates for ‘Click Chemistry’ cycloaddition
with azidothymidine (AZT).28 This four-step sequence, using read-
ily available reactants, provides convenient access to the structur-
ally complex coumarin-AZT conjugates 10a–e, STD NMR binding-
and in silico modelling studies of which encourage exploration of
their potential as dual-action HIV-1 PR/RT inhibitors.
8.8 mmol) was added to
a solution of 3-(chloro-methyl)coumarin (5a)
(0.80 g, 4.1 mmol) in dry THF (5 mL). After stirring at room temperature for
48 h, the reaction mixture was concentrated in vacuo and purified using flash
chromatography [on silica gel; elution with hexane/EtOAc (3:2)] to afford 3-
[(2-propynylamino)methyl]coumarin (8a) as an off-white solid (0.7 g, 80%), mp
107–108 °C [HRMS: m/z calculated for C13H12NO2 (MH+): 214.0868. Found:
214.0860]; m
max/cmꢁ1 (neat) 1694 (C@O); dH (400 MHz, CDCl3) 1.78 (1H, s, NH),
2.24 (1H, t, J = 2.4 Hz, C„CH), 3.48 (2H, d, J = 2.4 Hz, CH2–C„CH), 3.82 (2H, s,
CH2NH), 7.26 (1H, m, ArH), 7.32 (1H, d, J = 8.1 Hz, ArH), 7.48 (2H, m, ArH) and
7.73 (1H, s, 4-H); dC (100 MHz, CDCl3) 38.1 and 48.2 (CH2N), 72.4 and 82.0
(C„CH), 117.0, 119.6, 124.9, 127.3, 128.1, 131.6, 139.9 and 153.7 (Ar–C) and
161.8 (C@O).
6-Bromo-3-[(2-propynylamino)methyl]coumarin (8b) (0.55 g, 52%) as an off-
white solid, mp 136–137 °C [HRMS: m/z calculated for C13H11BrNO2 (MH+)
Acknowledgements
291.9973. Found: 291.9966];
m
max/cmꢁ1 (neat) 1712 (C@O); dH (400 MHz,
CDCl3) 1.76 (1H, br s, NH), 2.23 (1H, s, C„CH), 3.46 (2H, s, CH2–C„CH), 3.80
(2H, s, CH2NH), 7.18 (1H, d, J = 8.7 Hz, ArH), 7.54 (1H, d, J = 8.8 Hz, ArH), 7.58
(1H, s, ArH) and 7.64 (1H, s, 4-H); dC (100 MHz, CDCl3) 38.1 and 48.0 (CH2N),
72.5 and 81.9 (C„CH), 117.4, 118.6, 121.2, 128.8, 130.3, 134.2, 138.3 and 152.5
(Ar–C) and 161.0 (C@O).
The authors thank Rhodes University for a bursary (to T.O.O.),
the South African Medical Research Council (MRC) and Rhodes Uni-
versity for generous financial support, Aspen Pharmacare for the
supply of azidothymidine used for this work and the referee for
helpful comments.
8-Methoxy-3-[(2-propynylamino)methyl]coumarin (8c) (0.70 g, 65%) as a pale
yellow solid, mp 89–91 °C [HRMS: m/z calculated for
C
14H14NO3 (MH+)
244.0974. Found: 244.0973];
m
max/cmꢁ1 (neat) 1702 (C@O); dH (400 MHz,
CDCl3) 1.83 (1H, br s, NH), 2.21 (1H, s, C„CH), 3.45 (2H, s, CH2–C„CH), 3.78
(2H, s, CH2NH), 3.91 (3H, s, OCH3), 7.01 (2H, d, J = 7.9 Hz, ArH), 7.15 (1H, t,
J = 7.9 Hz, ArH) and 7.67 (1H, s, 4-H); dC (100 MHz, CDCl3) 38.0 and 48.2
(CH2N), 56.7 (OCH3), 72.4 and 82.0 (C„CH), 113.5, 119.5, 120.3, 124.7, 127.5,
139.9, 143.3 and 147.5 (Ar–C) and 161.2 (C@O).
References and notes
1. Frankel, A. D.; Young, J. A. T. Annu. Rev. Biochem. 1998, 67, 1–25.
2. Davey, R. T., Jr.; Dewar, R. L.; Reed, G. F.; Vasudevachari, M. B.; Polis, M. A.;
Kovacs, J. A.; Falloon, J.; Walker, R. E.; Masur, H.; Haneiwich, S. E.; O’Neill, D. G.;
Decker, M. R.; Metcalf, J. A.; Deloria, M. A.; Laskin, O. L.; Salzmant, N.; Lane, H. C.
Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5608–5612.
3. Ragno, R.; Frasca, S.; Manetti, F.; Brizzi, A.; Massa, S. J. Med. Chem. 2005, 48,
200–212.
4. Kostova, I.; Raleva, S.; Genova, P.; Argirova, R. Bioinorg. Chem. Appl. 2006, 68274,
1–9.
5. Kaye, P. T.; Musa, M. A.; Nchinda, A. T.; Nocanda, X. W. Synth. Commun. 2004,
34, 2575–2589.
6. Spino, C.; Dodier, M.; Sotheeswaran, S. Bioorg. Med. Chem. Lett. 1998, 8, 3475–
3478.
7. Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi,
D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59–62.
8. Xia, Y.; Yang, Z.-Y.; Xia, P.; Hackl, T.; Hamel, E.; Mauger, A.; Wu, J.-H.; Lee, K.-H.
J. Med. Chem. 2001, 44, 3932–3936.
9. Itoigawa, M.; Ito, C.; Tan, H. T.-W.; Kuchide, M.; Tokuda, H.; Nishino, H.;
Furukawa, H. Cancer Lett. 2001, 169, 15–19.
10. Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Tetrahedron Lett. 2006, 47,
3755–3757.
11. Yamamoto, Y.; Kurazono, M. Bioorg. Med. Chem. Lett. 2007, 17, 1626–1628.
12. Rashamuse, T. J.; Musa, M. A.; Klein, R.; Kaye, P. T. J. Chem. Res. 2009, 5, 302–
305.
13. Bourinbaiar, A. S.; Tan, X.; Nagorny, R. AID 1993, 7, 129–130.
14. Tummino, P. J.; Ferguson, D.; Hupe, L.; Hupe, D. Biochem. Biophys. Res. Commun.
1994, 200, 1658–1664.
15. Tummino, P. J.; Ferguson, D.; Hupe, D. Biochem. Biophys. Res. Commun. 1994,
201, 290–294.
8-Methoxy-3-[(2-propynylamino)methyl]coumarin (8d) (0.75 g, 70%) as a pale
yellow solid, mp 120–121 °C [HRMS: m/z calculated for C15H16NO3 (MH+)
258.1130. Found: 258.1124];
m
max/cmꢁ1 (neat) 1699 (C@O); dH (400 MHz,
CDCl3) 1.46 (3H, t, J = 7.0 Hz, OCH2CH3), 1.85 (1H, br s, NH), 2.23 (1H, t,
J = 2.4 Hz, C„CH), 3.46 (2H, d, J = 2.4 Hz, CH2–C„CH), 3.79 (2H, s, CH2NH), 4.15
(2H, q, J = 7.0 Hz, OCH2CH3), 7.01 (2H, 2 ꢂ overlapping d, ArH), 7.15 (1H, dd,
ArH) and 7.68 (1H, s, 4-H); dC (100 MHz, CDCl3) 15.2 (CH3), 38.0 and 48.2
(CH2N), 65.4 (CH2O), 72.4 and 82.0 (C„CH), 114.8, 119.5, 120.4, 124.7, 127.4,
140.1, 143.6 and 146.8 (Ar–C) and 161.4 (C@O).
6-Chloro-3-[(prop-2-ynylamino)methyl]coumarin (8e) (0.76 g, 70%) as a pale
yellow solid, mp 116–117 °C [HRMS: m/z calculated for C13H11ClNO2 (MH+)
248.0478. Found: 248.0460];
m
max/cmꢁ1 (neat) 1702 (C@O); dH (400 MHz,
CDCl3) 1.76 (1H, br s, NH), 2.27 (1H, t, J = 2.4 Hz, C„CH), 3.50 (2H, d, J = 2.4 Hz,
CH2–C„CH), 3.84 (2H, s, CH2NH), 7.28 (1H, d, J = 8.5 Hz, ArH), 7.45 (2H, m,
ArH) and 7.69 (1H, s, 4-H); dC (100 MHz, CDCl3) 38.1 and 48.0 (CH2N), 72.6 and
81.8 (C„CH), 118.4, 120.7, 127.3, 128.7, 130.1, 131.5, 138.5 and 152.0 (Ar–C)
and 161.2 (C@O).
4-{[(2H-1-Benzopyran-2-one-3-yl)methylamino]methyl}-1-[(2S,3R,5R)-5-(5-
methyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-1-yl)-2-
(hydroxymethyl)tetrahydrofuran-3-yl]-1H-1,2,3-triazole
(10a).
30-Azido-30-
deoxythymidine (9) (0.61 g, 2.3 mmol) was dissolved in H2O/THF (1:1;
12 mL) and 3-[(2-propynylamino)methyl]coumarin (8a) (0.49 g, 2.3 mmol),
sodium ascorbate (96 mg, 0.49 mmol) and Cu2SO4ꢀ5H2O (17 mg, 68
lmol)
were added to the solution. After stirring for 24 h at room temperature, the
mixture was extracted with CH2Cl2 (2 ꢂ 100 mL) and washed sequentially with
H2O (50 mL) and brine (30 mL). The organic layers were combined, dried over
anhydrous MgSO4, filtered and concentrated in vacuo. The crude material was
purified by flash chromatography [on silica gel; elution with EtOAc and then
with MeOH/EtOAc (2:3)] to afford the coumarin-AZT conjugate (10a) (0.72 g,
16. Vara Prasad, J. V. N.; Para, K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B., Jr.;
Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D.; Domagala, J. M.; Humblet, C.;
Bhat, T. N.; Liu, B.; Guerin, D. M. A.; Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K.
J. Am. Chem. Soc. 1994, 116, 6989–6990.
65%) as
C
a
light brown solid, mp 125–127 °C [HRMS: m/z calculated for
23H25N6O6 (MH+) 481.1836. Found: 481.1823];
m
max/cmꢁ1 (neat) 3291 (OH)
17. Lunney, E. A.; Hagen, S. E.; Domagala, J. M.; Humblet, C.; Kosinski, J.; Tait, B. D.;
Warmus, J. S.; Wilson, M.; Ferguson, D.; Hupe, D.; Tummino, P. J.; Baldwin, E. T.;
Bhat, T. N.; Liu, B.; Erickson, J. W. J. Med. Chem. 1994, 37, 2664–2677.
18. Kaye, P. T.; Musa, M. A.; Nocanda, X. W. Synthesis 2003, 531–534.
19. Kaye, P. T.; Musa, M. A. Synth. Commun. 2004, 34, 3409–3417.
20. Brik, A.; Alexandratos, J.; Lin, Y.-C.; Elder, J. H.; Olson, A. J.; Wlodawer, A.;
Goodsell, D. S.; Wong, C.-H. ChemBioChem 2005, 6, 1167–1169.
and 1684 (C@O); dH (400 MHz, methanol-d4) 1.90 (3H, s, CH3), 2.70 and 2.85
(2H, m, CH2CHN), 3.72 and 3.95 (4H, s, 2 ꢂ NCH2), 3.76 (1H, dd, J = 3.2, 12.3 Hz,
CHaOH), 3.89 (1H, dd, J = 2.9, 12.2 Hz, CHbOH), 4.30–4.34 (1H, m, OCHCHN),
5.37–5.42 (1H, m, OCHCH2OH), 6.47 (1H, t, J = 6.5 Hz, OCHN), 7.32–7.35 (2H, m,
ArH), 7.54–7.59 (1H, m, ArH), 7.63 (1H, dd, J = 1.3, 7.9 Hz, ArH), 7.90 (1H, s,
ArH), 7.93 (1H, s, ArH) and 8.05 (1H, s, ArH); dC (100 MHz, methanol-d4) 10.0
(CH3), 36.5 (CH2CHN), 41.8 and 46.4 (CH2N), 58.5 (CHN), 59.6 (CH2O), 83.9