Dalton Transactions
Paper
associative process and are strongly dependent on sterics.
These can be very rapid at room temperature as demonstrated
by exchange reactions between [{(Mesnacnac)Mg}2] 1c and
[{(Xylnacnac)Mg}2] 1d to form [(Mesnacnac)MgMg(Xylnacnac)]
4cd. In the chemistry of Zn–Zn-bonded complexes, the
exchange of anionic ligands as part of metathesis chemistry
has been used for the synthesis of new dizinc(I) complexes.8,10a,12
Similarly, anionic ligands can be exchanged between mag-
nesium(I) dimers and lithium complexes of suitable ligands;
the latter process required more forcing reaction conditions in
comparison. These reactions can be used to generate new mag-
nesium(I) dimers bearing two different anionic ligands for
example. The studies furthermore suggest that in addition to
the overall ligand size, the ligand shape is important for these
reactions. We suggest that the open backbone region of the
β-diketiminate ligand facilitates this exchange possibly invol-
ving the “vacant coordination site” of the nucleophilic γ-CH
unit of β-diketiminates. Ligand exchange reactions between
different magnesium(I) dimers catalysed by C60 did not show
significant acceleration though we found a significant suppres-
sion of decomposition reactions from disproportionation reac-
tions. While anionic ligands are exchanged in the uncatalysed
reactions, scrambling of LMg units could in addition be poss-
ible when fullerides are involved.
(c) A. Stasch and C. Jones, Dalton Trans., 2011, 40, 5659–
5672.
2 (a) K. Yuvaraj, I. Douair, A. Paparo, L. Maron and C. Jones,
J. Am. Chem. Soc., 2019, 141, 8764–8768; (b) T. X. Gentner,
B. Rösch, G. Ballmann, J. Langer, H. Elsen and
S. Harder, Angew. Chem., Int. Ed., 2019, 58, 607–611;
(c) S. J. Bonyhady, D. Collis, N. Holzmann, A. J. Edwards,
R. O. Piltz, G. Frenking, A. Stasch and C. Jones, Nat.
Commun., 2018, 9, 3079; (d) J. Li, M. Luo, X. Sheng,
H. Hua, W. Yao, S. A. Pullarkat, L. Xua and M. Ma, Org.
Chem. Front., 2018, 5, 3538–3547; (e) I. Pernik,
B. J. Maitland, A. Stasch and C. Jones, Can. J. Chem., 2018,
96, 513–521; (f) C. Bakewell, A. J. P. White and
M. R. Crimmin, J. Am. Chem. Soc., 2016, 138, 12763–12766;
(g) A. J. Boutland, I. Pernik, A. Stasch and C. Jones, Chem.
– Eur. J., 2015, 21, 15749–15758; (h) R. Lalrempuia,
C. E. Kefalidis, S. J. Bonyhady, B. Schwarze, L. Maron,
A. Stasch and C. Jones, J. Am. Chem. Soc., 2015, 137,
8944–8947; (i) S. J. Bonyhady, C. Jones, S. Nembenna,
A. Stasch, A. J. Edwards and G. J. McIntyre, Chem. – Eur. J.,
2010, 16, 938–955; ( j) S. P. Green, C. Jones and
A. Stasch, Angew. Chem., Int. Ed., 2008, 47, 9079–9083;
(k) S. P. Green, C. Jones and A. Stasch, Science, 2007, 318,
1754–1757.
We also propose that the reduction of C60 with [{(Arnacnac)
Mg}2] 1 is facilitated by the unique shape of β-diketiminate
ligands. In contrast, reactions of C60 with the diiminophosphi-
nate complex [({Ph2P(NDip)2}Mg)2] 2 with a more protected
ligand backbone region are significantly slowed down, and
form the expected structurally characterised fulleride complex
[({Ph2P(NDip)2}Mg)6C60] 8. The fact that six cationic diimino-
phosphinate magnesium complex fragments arrange comfor-
tably around the fulleride is further support that its overall
size is more comparable to that of [{(Mesnacnac)Mg]+ cation.
Coordination of C60 to a Mg centre of a magnesium(I) dimer is
likely not involved in the rate-determining activation step
because a reaction between [{(Mesnacnac)Mg}2] 1c, and C60 still
occurs in THF at room temperature. Steric factors do play a
role in the activation and a close approach of the molecules
without initial Mg⋯C60 coordination may be involved.
3 (a) M. Ma, H. Wang, J. Wang, L. Shen, Y. Zhao, W.-H. Xu,
B. Wu and X.-J. Yang, Dalton Trans., 2019, 48, 2295–2299;
(b) Y. Liu, S. Li, X.-J. Yang, P. Yang and B. Wu, J. Am. Chem.
Soc., 2009, 131, 4210–4211.
4 A. Stasch, Angew. Chem., Int. Ed., 2014, 53, 10200–10203.
5 A. J. Boutland, D. Dange, A. Stasch, L. Maron and C. Jones,
Angew. Chem., Int. Ed., 2016, 55, 9239–9243.
6 (a) J. A. Platts, J. Overgaard, C. Jones, A. Stasch and
B. B. Iversen, J. Phys. Chem. A, 2011, 115, 194–200;
(b) J. Overgaard, C. Jones, A. Stasch and B. B. Iversen, J. Am.
Chem. Soc., 2009, 131, 4208–4209.
7 L.-C. Wu, C. Jones, A. Stasch, J. A. Platts and J. Overgaard,
Eur. J. Inorg. Chem., 2014, 32, 5536–5540.
8 (a) T. Li, S. Schulz and P. W. Roesky, Chem. Soc. Rev., 2012,
41, 3759–3771; (b) E. Carmona and A. Galindo, Angew.
Chem., Int. Ed., 2008, 47, 6526–6536.
9 (a) C. Bakewell, B. J. Ward, A. J. P. White and
M. R. Crimmin, Chem. Sci., 2018, 9, 2348–2356;
(b) H. Banh, K. Dilchert, C. Schulz, C. Gemel, R. W. Seidel,
R. Gautier, S. Kahlal, J. Y. Saillard and R. A. Fischer, Angew.
Chem., Int. Ed., 2016, 55, 3285–3289; (c) J. Hicks,
E. J. Underhill, C. E. Kefalidis, L. Maron and C. Jones,
Angew. Chem., Int. Ed., 2015, 54, 10000–10004.
10 (a) H. Banh, C. Gemel, R. W. Seidel and R. A. Fischer,
Chem. Commun., 2015, 51, 2170–2172; (b) S. Schulz,
D. Schuchmann, I. Krossing, D. Himmel, D. Bläser and
R. Boese, Angew. Chem., Int. Ed., 2009, 48, 5748–5751.
11 (a) A. Grirrane, I. Resa, A. Rodriguez, E. Carmona,
E. Alvarez, E. Gutierrez-Puebla, A. Monge, A. Galindo,
D. del Rio and R. A. Andersen, J. Am. Chem. Soc., 2007, 129,
693–703; (b) I. Resa, E. Carmona, E. Gutierrez-Puebla and
A. Monge, Science, 2004, 305, 1136–1138.
Conflicts of interest
The authors declare no conflict of interest.
Acknowledgements
This work was supported by the University of St Andrews and
the EPSRC (PhD studentship for SRL; EP/N509759/1).
References
1 (a) C. Jones, Nat. Rev. Chem., 2017, 1, 0059; (b) C. Jones and
A. Stasch, Top. Organomet. Chem., 2013, 45, 73–101;
This journal is © The Royal Society of Chemistry 2019
Dalton Trans., 2019, 48, 16936–16942 | 16941