ACS Catalysis
Page 6 of 7
52, 11011–11015. (f) Coombs, J. R.; Haeffner, F.; Kliman, L. T.;
Shuangguan, X; Li, H.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80,
7779–7784.
(12) (a) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136,
6534–6537. (b) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J.
P. J. Am. Chem. Soc. 2014, 136, 17918–17921. (c) Sun, H.ꢀY.; Kubota,
K.; Hall, D. G. Chem. Eur. J. 2015, 21, 19186–19194. (d) Joannou, M.
V.; Moyer, B. S.; Meek, S. J.; J. Am. Chem. Soc. 2015, 137, 6176–6179.
(e) Shi, Y.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 3455–3458.
(13) Kliś, T.; Lulinśki, S.; Serwatowski, J. Curr. Org. Chem. 2010, 14,
2549–2566.
(14) (a) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R.
Chem. Commun. 2007, 675–691. (b) Helmchen, G. In Iridium Complex-
es in Organic Synthesis; Oro, L. A., Claver, C., Eds.; WileyꢀVCH:
Weinheim, Germany, 2009; p 211. (c) Hartwig, J. F.; Stanley, L. M. Acc.
Chem. Res. 2010, 43, 1461–1475. (d) Hartwig, J. F.; Pouy, M. J. Top.
Organomet. Chem. 2011, 34, 169–208. (e) Liu, W.ꢀB.; Xia, J.ꢀB.; You,
S.ꢀL. Top. Organomet. Chem. 2012, 38, 155–208. (f) Tosatti, P.; Nelson,
A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147–3163.
(15) Compound 10 is commercially available [from, e.g., SigmaꢀAldrich
(catalog No. 794287) and TCI (catalog No. B4103)]. For the original
synthetic method of this compound, see: Matteson, D. S.; Moody, R. J.
Organometallics 1982, 1, 20–28. The Morken11h group and Fu11i group
have each reported a modified synthesis of this compound.,
(16) In a recent study by the Carreira group, N,Nꢀdialkylhydrozones was
used as a formyl anion equivalent in Irꢀcatalyzed AAS reactions. Breitler,
S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296–5299.
(17) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012,
134, 16449–16451.
Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222–11231. (g) Fang, L.;
Yan, L.; Haeffner, F.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 2508–
2511.
1
2
3
4
5
6
7
8
(7) (a) Ohmura, T.; Taniguchi, H.; Kondo, Y.; Suginome, M. J. Am. Chem.
Soc. 2007, 129, 3518–3519. (b) Ito, H.; Toyoda, T.; Sawamura, M. J.
Am. Chem. Soc. 2010, 132, 5990–5992. (c) Matsuda, N.; Hirano, K.;
Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934–4937. (d) Liu,
P.; Fukui, Y.; Tian, P.; He, Z.ꢀT.; Sun, C.ꢀY.; Wu, N.ꢀY.; Lin, G.ꢀQ. J.
Am. Chem. Soc. 2013, 135, 11700–11703. (e) Meng, F.; Haeffner, F.;
Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 11304–11307. (f) Meng,
F.; McGrath, K. P.; Hoveyda, A. H. Nature 2014, 513, 367–374. (g) Jia,
T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Chem. Eur. J. 2015, 21, 4918–
4922. (h) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J.
J. Am. Chem. Soc. 2015, 137, 13760–13763.
(8) (a) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am.
Chem. Soc. 2007, 129, 14856–14857. (b) Ito, H.; Sasaki, Y.; Sawamura,
M. J. Am. Chem. Soc. 2008, 130, 15774–15775. (c) Ito, H.; Kunli, S.;
Sawamura, M. Nature Chem. 2010, 2, 972–976. (d) Ito, H.; Okura, T.;
Matsuura, K.; Sawamura, M. Angew. Chem. Int. Ed. 2010, 49, 560–563.
(e) O’Brien, M.; Lee, K.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132,
10634–10637. (f) Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; McQuade,
D. T. J. Am. Chem. Soc. 2011, 133, 2410–2413. (g) Tortosa, M. Angew.
Chem. Int. Ed. 2011, 50, 3950–3953. (h) Yamamoto, E.; Takenouchi, Y.;
Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 47, 16515–
16521.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) (a) Cid, J.; Gulyás, H.; Carbó, J. J.; Fernádez, E. Chem. Soc. Rev.
2012, 41, 3558–3570. (b) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y.
Tetrahedron 2015, 71, 2183–2197.
(18) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068–2071.
(19) Diethylchlorophosphate used in the preparation of allylic phosphates
is a cholinesterase inhibitor.
(20) Shu, C.; Hartwig, J. F. Angew. Chem. Int. Ed. 2004, 43, 4794–4797.
(21) Ohmiya, H.; Yokobori, U.; Makida, Y.; Sawamura, M. J. Am. Chem.
Soc. 2010, 132, 2895–2897.
(22) Endo, K.; Kurosawa, F.; Ukaji, Y. Chem. Lett. 2013, 42, 1363–1365.
(23) Reducing the amount of [Ir(COD)Cl]2 used to 1.5 mol% led to inꢀ
complete conversion of starting materials.
(10) Using prochiral vinyl boronates as substrates to make chiral organoꢀ
boronates is an important alternative. For representative examples, see:
(a) Gao, X. Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308–9309. (b)
Carosi, L.; Hall, D. G. Angew. Chem. Int. Ed. 2007, 46, 5913–5915. (c)
Lee, J. C. H.; Hall, D. G. J. Am. Chem. Soc. 2010, 132, 5544–5545. For a
representative example of the borylative isomerization developed by the
Hall group, see: (d) Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc.
2009, 131, 9612–9613.
(11) For pioneering work in this area, see: (a) Endo, K.; Ohkubo, T.; Hiꢀ
rokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033–11035. (b)
Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77,
4826–4831. (c) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13,
3368–3371. (d) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nature Chem.
2011, 3, 894–899. (e) Feng, X.; Jeon, H.; Yun, J. Angew. Chem. Int. Ed.
2013, 52, 3989–3992. (f) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew.
Chem. Int. Ed. 2016, 55, 1498–1501. (g) Joannou, M. V.; Moyer, B. S.;
Goldfogel, M. J.; Meek, S. J. Angew. Chem. Int. Ed. 2015, 54, 14141–
14145. (h) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136,
10581–10584. (i) Zhang, Z.ꢀQ.; Yang, C.ꢀT.; Liang, L.ꢀJ.; Xiao, B.; Lu,
X.; Liu, J.ꢀH.; Sun, Y.ꢀY.; Marder, T. B.; Fu, Y. Org. Lett. 2014, 16,
6342–6345. (j) Zhang, Z.ꢀQ.; Zhang, B.; Lu, X.; Liu, J.ꢀH.; Lu, X.ꢀY.;
Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952–955. (k) Wommack, A. J.;
Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163–3166. (l) Xu, S.;
(24) (a) Liu, W.ꢀB.; Zheng, C.; Zhuo, C.ꢀX.; Dai, L.ꢀX.; You, S.ꢀL. J. Am.
Chem. Soc. 2012, 134, 4812–4821. (b) Defieber, C.; Ariger, M. A.;
Moriel, P.; Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 3139–3143.
(25) In fact, Ag3PO4 is also an effective additive when L3 is used, but it
gives 17 in somewhat lower ee than do the other two silver salts.
(26) For a review on kinetic resolution, see: (a) Kagan, H. B.; Fiaud, J. C.
Top. Stereochem. 1988, 18, 249–330. For a related kinetic resolution
process, see: ref 16.
(27) Janza, B.; Studer, A. J. Org. Chem. 2005, 70, 6991–6994.
(28) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K.
Nature Chem. 2014, 6, 584–589.
(29) (a) Ito, T.; Overman, L. E.; Wang, J. J. Am. Chem. Soc. 2012, 134,
16449–16451. (b) Aron, Z. D.; Ito, T.; May, T. L.; Overman, L. E.;
Wang, J. J. Org. Chem. 2013, 78, 9929–9948.
(30) Chung, Y.ꢀC.; Janmanchi, D.; Wu, H.ꢀL. Org. Lett. 2012, 14, 2766–
2769.
ACS Paragon Plus Environment