SYNTHESIS OF RASPBERRY KETONE VIA FRIEDEL-CRAFTS ALKYLATION
61
9. G. Sartori, F. Bigi, G. Casiraghi, G. Carnati, L. Chiesi,
The proposed mechanism for the alkylation of phenol
with butanolone [34]. The strong acidic ionic liquids
could protonate the hydroxyl group in butanolone
which can liberate H2O to form carbocation 4 [35].
The carbocation could either directly attack the ortho-
or para- position of phenol via formation of transition
state (a) as shown in Scheme 3 (which shows only
ortho-attack) to give the ortho- or para- alkyl phenol;
or it can undergo elimination of proton to form the
alkene 5 [36] which could also attack the ortho- or
para- position of phenol via formation of transition
state (b).
and A. Arduini, Chem. Ind. 22, 762 (1985).
10. A. A. Carlton, J. Org. Chem. 13, 120 (1948).
11. W. A. Herrmann and V. P. W. Bohm, J. Organomet.
Chem. 572, 141 (1999).
12. A. Sakthivel, S. K. Badamali, and P. Selvam, Micropor.
Mesopor. Mater. 39, 457 (2000).
13. A. V. Krishnan, K. Ojha, and N. C. Pradhan, Org. Pro-
cess. Res. Dev. 6, 132 (2002).
14. K. Zhang, H. Zhang, G. Xua, S. Xiang, D. Xu, S. Liu,
and H. Li, Appl. Catal., A. 207, 183 (2001).
15. S. Sumbramanian, A. Mitra, C. V. V. Satyanarayana,
and D. K. Chakrabarty, Appl. Catal., A. 159, 229
(1997).
CONCLUSIONS
16. T. Sato, G. Sekiguchi, T. Adschiri, and K. Arai, Chem.
Commun. 17, 1566 (2001).
In this study, SO3H-functional ionic liquids were
prepared and used for the synthesis of RK under sol-
vent-free conditions. The result demonstrated the
optimized conditions for this reaction were the molar
ratio of phenol : butanolone : ILs ([TEA-PS][HSO4]) =
5 : 1 : 0.2 at 50°C over 90 min, the biggest yield of RK
was 82.5% under these conditions. Furthermore, the
used IL catalyst could be easily recovered by simple
separation and reused up to five times without any
apparent reduction in its activity. Therefore, we come
to a conclusion that the alkylation of phenol with
butanolone catalyzed by Brφnsted acidic ionic liquid
([TEA-PS][HSO4]) indicates a great potential for pro-
ducing raspberry ketone.
17. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed.
39, 3772 (2000).
18. J. Dupont, R. F. de Souza, and P. A. Z. Suarez, Chem.
Rev. 102, 3667 (2002).
19. C. M. Gordon, Appl. Catal., A. 222, 101 (2002).
20. H. J. Olivier, Mol. Catal. 146, 285 (1999).
21. T. Welton, Chem. Rev. 99, 2071 (1999).
22. H. Olivier and L. Magna, J. Mol. Catal. A 419, 182
(2002).
23. J. D. Holbrey and K. R. Seddon, Clean Prod. Process.
1, 223 (1999).
24. K. W. Kottsieper, O. Stelzer, and P. Wasserscheid,
J. Mol. Catal. A 175, 285 (2001).
25. E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis,
J. Am. Chem. Soc. 124, 926 (2002).
26. J. Gui, Y. Deng, Z. Hu, and Z. Sun, Tetrahedron Lett.
ACKNOWLEDGMENTS
45, 2681 (2004).
This work was financially supported by the
Research Foundation of Zhejiang Provincial Educa-
tion Department (no. 20060811).
27. A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran,
K. J. Weave, D. C. Forbes, and J. H. Davis, J. Am.
Chem. Soc. 124, 5962 (2002).
28. D. C. Forbes and K. J. Weaver, J. Mol. Catal. A 214,
129 (2004).
REFERENCES
1. K. J. Rossiter, Chem. Rev. 96, 3201 (1996).
29. Y. Gu, F. Shi, and Y. Deng, J. Mol. Catal. A 212, 71
(2004).
30. J. Gui, X. Cong, D. Liu, X. Zhang, Z. Hu, and Z. Sun,
2. H. Schinz and C. F. Seidel, Helv. Chim. Acta 40, 1839
Catal. Commun. 5, 473 (2004).
(1957).
31. H. Qian and D. B. Liu, Ind. Eng. Chem. Res. 50, 1146
3. H. Schinz and C. F. Seidel, Helv. Chim. Acta 44, 278
(2011).
(1961).
32. E. Dumitriu and V. Hulea, J. Catal. 218, 249 (2003).
4. D. Yoshida, JP Patent No. 6 321 850 (1988).
5. I. Matsuji, A. Masashi, and Y. Yoshio, JP Patent
No. 63258444 (1988).
6. T. Nishimura, S. Yoshii, H. Toku, and B. Nomiya, DE
Patent No. 2142494 (1972).
33. X. Y. Liao, S. G. Wang, X. M. Xiang, Y. L. Zhu,
X. C. She, and Y. W. Li, Fuel Process. Technol. 96, 74
(2012).
34. K. M. Hello, F. Adam, and T. H. Ali, J. Taiwan Inst.
Chem. E. 45, 134 (2014).
7. A. Deifel and Z. Lebensm, Unters Forsch. 188, 330
35. K. U. Nandhini, J. H. Mabel, B. Arabindoo, M. Pala-
nichamy, and V. Murugesan, Micropor. Mesopor.
Mater. 96, 21 (2006).
(1989).
8. J. Beekwilder, I. M. van der Meer, O. Sibbesen,
M. Broekgaarden, I. Qvist, J. D. Mikkelsen, and 36. K. Song, J. Guan, S. Wu, Y. Yang, B. Liu, and Q. Kan,
R. D. Hall, Biotechnol. J. 2, 1270 (2007).
Catal. Lett. 126, 333 (2008).
PETROLEUM CHEMISTRY Vol. 58 No. 1 2018