FULL PAPER
[2] a) Z. Chen, X. Li, H. He, Z. Ren, Y. Liu, J. Wang, Z. Li, G.
Shen, G. Han, Colloids Surf. B 2012, 95, 274–278; b) Z. Xu, S.
Liu, Y. Kang, M. Wang, Nanoscale 2015, 7, 5859–5868.
[3] a) S. Huang, X. Kang, Z. Cheng, P. Ma, Y. Jia, J. Lin, J. Colloid
Interface Sci. 2012, 387, 285–291; b) Y. Hong, X. Chen, X.
Jing, H. Fan, Z. Gu, X. Zhang, Adv. Funct. Mater. 2010, 20,
1503–1510; c) Y. Li, B. Li, G. Xu, Z. Ahmad, Z. Ren, Y. Dong,
X. Li, W. Weng, G. Han, Colloids Surf. B 2014, 122, 785–791.
[4] Z. Hou, P. Yang, H. Lian, L. Wang, C. Zhang, C. Li, R. Chai,
Z. Cheng, J. Lin, Chem. Eur. J. 2009, 15, 6973–6982.
[5] a) P. Huang, K. W. Xu, Y. Han, Mater. Lett. 2005, 59, 185–
189; b) H. Tang, F. Wang, Mater. Lett. 2013, 93, 427–430; c)
J. P. Wiff, V. M. Fuenzalida, J. L. Arias, M. S. Fernandez, Ma-
ter. Lett. 2007, 61, 2739–2743.
with N,N-dimethylformamide solution and stirred for another 6 h
to form spinnable precursor sols.
The electrospinning sol was fed into the conducting nozzle (2 mm
inner diameter) by using an infusion pump (KDS-100, KD Scien-
tific, USA) at a constant flow rate of 0.5 mL/h. The distance and
voltage applied between the needle tip and the collector were set at
15 cm and 10 kV (PS/FC30P04.0–22, Glassman High voltage Inc.,
USA), respectively. As-spun fibers were dried overnight at 80 °C
and calcined in air at 700 °C for 2 h, with a heating rate of 2 °C/
min.
Characterization: The thermal behavior, crystal structure, mor-
phology, and microstructure were investigated by using TG-DSC
(DSCQ1000, AT, USA, air atmosphere), XRD (XЈPertPRO MPD,
Netherlands, using Cu-Kα radiation, λ = 0.1540598 nm), SEM (FE
SEM, Hitachi SU-70, Japan), and TEM (Philips TecnaiF20 S-
TWIN, Netherlands), respectively. The specific surface area and
pore size distribution were determined by N2 adsorption/desorp-
tion analysis at liquid nitrogen temperature (77 K) by using a
Coulter OMNISORP-100 apparatus. The FTIR spectra were re-
corded with a Perkin–Elmer 580B infrared spectrophotometer on
KBr pellets (Tensor 27, Bruker, Germany). UV/Vis absorption val-
ues were measured with a TU-1810 spectrophotometer.
[6] a) G. M. S. Kaciulis, L. Pandolfi, M. Cavalli, G. Gnappi, A.
Montenero, Appl. Surf. Sci. 1999, 151, 1–5; b) S. Holliday, A.
Stanishevsky, Surf. Coat. Technol. 2004, 188, 741–744.
[7]
a) K. Asami, K. Saito, N. Ohtsu, S. Nagata, T. Hanawa, Surf.
Interface Anal. 2003, 35, 483–488; b) T. J. Webster, C. Ergun,
R. H. Doremus, W. A. Lanford, J. Biomed. Mater. Res., Part A
2003, 67, 975–980.
[8]
X. F. Yang, J. X. Fu, C. J. Jin, J. A. Chen, C. L. Liang, M. M.
Wu, W. Z. Zhou, J. Am. Chem. Soc. 2010, 132, 14279–14287.
O. Ruzimuradov, G. Hasegawa, K. Kanamori, K. Nakanishi,
J. Am. Ceram. Soc. 2011, 94, 3335–3339.
[9]
[10]
D. B. Yu, J. H. Zhang, F. Wang, M. H. Zhao, K. Du, S. W.
Shu, J. W. Zou, Y. Wang, Cryst. Growth Des. 2013, 13, 3138–
3143.
Drug Loading and Release
IBU-release measurements were carried out by UV/Vis absorption
spectroscopy. The absorbance values were measured at a character-
istic wavelength of 222 nm, at which the IBU-release medium shows
the maximum absorbance. A calibration curve was drawn by plot-
ting absorbance vs. IBU concentration.
[11]
[12]
N. Bhardwaj, S. C. Kundu, Biotechnol. Adv. 2010, 28, 325–347.
a) E. M. Jeffries, R. A. Allen, J. Gao, M. Pesce, Y. D. Wang,
Acta Biomaterials 2015, 18, 30–39; b) C. H. Ru, F. L. Wang,
M. Pang, L. N. Sun, R. H. Chen, Y. Sun, ACS Appl. Mater.
Interfaces 2015, 7, 10872–10877; c) J. Thunberg, T. Kalogero-
poulos, V. Kuzmenko, D. Hagg, S. Johannesson, G. Westman,
P. Gatenholm, Cellulose 2015, 22, 1459–1467.
In the drug-loading procedure, CaTiO3 nanofibers (300 mg) were
suspended in a hexane solution of IBU (40 mg/mL, 50 mL) at am-
bient temperature and stirred for 24 h to induce the diffusion of
the drug into the pores. Then, the nanofibers were collected by
centrifugation and washed with hexane to remove the IBU ad-
sorbed on the outer surface. The filtrate (1 mL) was collected and
diluted for the measurement of drug-loading capacity by UV/Vis
spectroscopy at a wavelength of 222 nm.
[13]
a) N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul,
N. Rodthongkum, Sensor Actuat. B-Chem. 2015, 207, 526–534;
b) P. P. Zhang, X. N. Zhao, Y. C. Ji, Z. F. Ouyang, X. Wen,
J. F. Li, Z. Q. Su, G. Wei, J. Mater. Chem. B 2015, 3, 2487–
2496.
[14]
[15]
a) Z. Wang, C. C. Zhao, Z. J. Pan, J. Colloid Interface Sci.
2015, 441, 121–129; b) X. Q. Li, N. Wang, G. Fan, J. Y. Yu, J.
Gao, G. Sun, B. Ding, J. Colloid Interface Sci. 2015, 439, 12–
20.
a) A. Lowe, J. Bills, R. Verma, L. Lavery, K. Davis, K. J.
Balkus, Acta BioMater. 2015, 13, 121–130; b) R. Zhao, X. Li,
B. L. Sun, Y. Tong, Z. Q. Jiang, C. Wang, Rsc Adv. 2015, 5,
16940–16949.
In vitro drug release was investigated after IBU-loaded CaTiO3
nanofibers were dried overnight at 60 °C. IBU-loaded CaTiO3
nanofibers (200 mg) were immersed in the release medium PBS
with gentle stirring at 37 °C. At each selected time interval, an ali-
quot (1 mL) was collected and immediately replaced with an equal
volume of fresh PBS. The samples collected were diluted and ana-
lyzed by UV/Vis spectroscopy at a wavelength of 222 nm.
[16]
[17]
Z. Hou, C. Li, P. Ma, G. Li, Z. Cheng, C. Peng, D. Yang, P.
Yang, J. Lin, Adv. Funct. Mater. 2011, 21, 2356–2365.
a) R. Xu, Y. F. Si, F. T. Li, B. R. Zhang, Environ. Sci. Pollut.
Res. Int. 2015, 22, 3838–3846; b) C. Tang, C. D. Saquing, S. W.
Morton, B. N. Glatz, R. M. Kelly, S. A. Khan, ACS Appl. Ma-
ter. Interfaces 2014, 6, 11899–11906.
Acknowledgments
[18]
W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C.
Gong, Z. Bao, B. Lu, X. Li, W. Lan, E. Xie, J. Mater. Chem.
2010, 20, 9068.
This work was financially supported by the National Nature Sci-
ence Foundation of China (No. 51232006), the “Qianjiang” Talent
Program of Zhejiang Province (2013R10037), and the Nature Sci-
ence Foundation of Zhejiang Province (LY15E020005). C. M.
would like to thank for the financial support from National Insti-
tutes of Health (EB015190) and National Science Foundation
(CMMI-1234957).
[19] a) K. Tang, Y. Yu, X. Mu, P. A. van Aken, J. Maier, Electro-
chem. Commun. 2013, 28, 54–57; b) D. Li, Y. N. Xia, Nano
Lett. 2003, 3, 555–560.
[20]
[21]
[22]
[23]
[24]
W. Q. Li, S. Y. Ma, J. Luo, Y. Z. Mao, L. Cheng, D. J. Geng-
zang, X. L. Xu, S. H. Yan, Mater. Lett. 2014, 132, 338–341.
P. P. Zhang, D. R. Chen, X. L. Jiao, Eur. J. Inorg. Chem. 2012,
4167–4173.
Z. P. Li, Y. J. Fan, J. H. Zhan, Eur. J. Inorg. Chem. 2010, 3348–
3353.
Q. Zhang, Y. Li, Z. Ren, Z. Ahmad, X. Li, G. Han, Mater.
Lett. 2015, 152, 82–85.
a) C. Peng, Z. Hou, C. Zhang, G. Li, H. Lian, Z. Cheng, J.
Lin, Opt. Express 2010, 18, 7543–7553; b) G. P. Dong, X. D.
[1] a) Z. Y. Hou, X. J. Li, C. X. Li, Y. L. Dai, P. A. Ma, X. Zhang,
X. J. Kang, Z. Y. Cheng, J. Lin, Langmuir 2013, 29, 9473–9482;
b) Y. Hong, X. Chen, X. Jing, H. Fan, B. Guo, Z. Gu, X.
Zhang, Adv. Mater. 2010, 22, 754–758; c) M. Vallet-Regi, A.
Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001,
13, 308–311.
Eur. J. Inorg. Chem. 2015, 4532–4538
4537
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim