O.Z. Yanchevskii, O.I. V’yunov, A.G. Belous et al.
Journal of Alloys and Compounds 874 (2021) 159861
Declaration of Competing Interest
[22] T.-T. Fang, K.-T. Lee, New insights into understanding the defect structures and
relationship of frequency dependences of dielectric permittivity and ac con-
[23] J. Zhao, H. Zhao, Z. Zhu, Influence of sintering conditions and CuO loss on di-
electric properties of CaCu3Ti4O12 ceramics, Mater. Res. Bull. 113 (2019) 97–101,
The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.
[24] S. Kumar, N. Ahlawat, N. Ahlawat, Effect of heating rate on microstructure and
electrical properties of microwave sintered CaCu3Ti4O12 ceramics, Adv. Mater.
Acknowledgments
[25] P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, Influence of sintering conditions on
microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics, J. Alloy.
[26] L. Singh, U.S. Rai, K.D. Mandal, M. Yashpal, Dielectric properties of ultrafine Zn-
[27] Z. Yang, Y. Zhang, G. You, K. Zhang, R. Xiong, J. Shi, Dielectric and electrical
transport properties of the Fe3+-doped CaCu3Ti4O12, J. Mater. Sci. Technol. 28
[28] F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y‐doped calcium
[29] S. Jin, H. Xia, Y. Zhang, Effect of La-doping on the properties of CaCu3Ti4O12 di-
[30] W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped
CaCu3Ti4O12 ceramics, J. Mater. Sci. Technol. 26 (2010) 682–686, https://doi.org/
This work was supported by the Research program of the
Ukrainian National Academy of Sciences “New functional substances
and materials for chemical production” (Fine Chemicals) [grant
number 0119U101351].
References
[1] A.I. Kingon, J.-P. Maria, S.K. Streiffer, Alternative dielectrics to silicon dioxide for
[2] U.S. Congress, Office of Technology Assessment, Miniaturization Technologies,
OTA-TCT514, Government Printing Office, Washington, DC, U.S., (1991).
[3] M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric
constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151 (2000)
[4] L.C. Kretly, A.F.L. Almeida, R.S. De Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical
and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices
[31] M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate
(CCTO) electroceramic: synthesis, dielectric properties, film deposition, and
[5] R. Löhnert, H. Bartsch, R. Schmidt, B. Capraro, J. Töpfer, Microstructure and
electric properties of CaCu3Ti4O12 multilayer capacitors, J. Am. Ceram. Soc. 98
[32] S. Kawrani, M. Boulos, D. Cornu, M. Bechelany, From synthesis to applications:
copper calcium titanate (CCTO) and its magnetic and photocatalytic properties,
[33] S.W. Choi, S.H. Hong, Y.M. Kim, Effect of Al doping on the electric and dielectric
properties of CaCu3Ti4O12, J. Am. Ceram. Soc. 90 (2007) 4009–4011, https://doi.
[34] L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, Dielectric properites of Al-
doped CaCu3Ti4O12 ceramics by coprecipitation method, in: Proceedings of 2011
International Symposium on Electrical Insulating Materials, IEEE, 2011, pp. 23-
[6] B.K. Kim, H.S. Lee, J.W. Lee, S.E. Lee, Y.S. Cho, Dielectric and grain‐boundary
characteristics of hot pressed CaCu3Ti4O12, J. Am. Ceram. Soc. 93 (2010)
[7] V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais,
F. Gervais, Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics,
[8] G. Deng, T. Yamada, P. Muralt, Evidence for the existence of a metal-insulator-
semiconductor junction at the electrode interfaces of CaCu3Ti4O12 thin film ca-
[9] P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the
colossal dielectric constants in CaCu3Ti4O12, Phys. Rev. B 70 (2004) 172102,
[10] T.-T. Fang, C. Liu, Evidence of the internal domains for inducing the anomalously
high dielectric constant of CaCu3Ti4O12, Chem. Mater. 17 (2005) 5167–5171,
[35] J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, (Al3+, Nb5+) co–doped
CaCu3Ti4O12: an extended approach for acceptor–donor heteroatomic substitu-
tions to achieve high–performance giant–dielectric permittivity, J. Eur. Ceram.
[36] S. De Almeida-Didry, M.M. Nomel, C. Autret, C. Honstettre, A. Lucas, F. Pacreau,
F. Gervais, Control of grain boundary in alumina doped CCTO showing colossal
permittivity by core-shell approach, J. Eur. Ceram. Soc. 38 (2018) 3182–3187,
[37] Y. Zhang, L.L. Xue, K. Zeng, X.W. Wang, L.Y. Sun, X.H. Meng, Y.C. Shi, Y.Y. Li,
M.Z. Cao, Y.C. Hu, Dielectric properties of Al2O3 modified CaCu3Ti4O12 ceramics, J.
[11] M.A. Subramanian, A.W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high
dielectric constants and valence degeneracy, Solid State Sci. 4 (2002) 347–351,
[12] P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramirez, W.C. Ribeiro, E. Longo,
J.A. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an
approach for the origin of the huge dielectric constant and semiconducting
[38] K. Pal, A. Dey, R. Jana, P.P. Ray, P. Bera, L. Kumar, T.K. Mandal, P. Mohanty, M.M.
Seikh, A. Gayen, Citrate combustion synthesized Al-doped CaCu3Ti4O12 quad-
ruple perovskite: synthesis, characterization and multifunctional properties,
[39] J. Jumpatam, N. Chanlek, P. Thongbai, Giant dielectric response, electrical
properties and nonlinear current-voltage characteristic of Al2O3-CaCu3Ti4O12
[40] A.E. Smith, T.G. Calvarese, A.W. Sleight, M.A. Subramanian, An anion substitution
route to low loss colossal dielectric CaCu3Ti4O12, J. Solid State Chem. 182 (2009)
[41] J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri,
P. Chindaprasirt, Improved giant dielectric properties of CaCu3Ti4O12 via si-
multaneously tuning the electrical properties of grains and grain boundaries by
[13] Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Nanoscale
disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response, Phys.
[14] T. Hori, M. Takesada, A. Onodera, Structural aspects in A-site ordered perovskite
CaCu3Ti4O12: colossal dielectric behavior and Ca/Cu disordering, Ferroelectrics
[15] R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li,
D.C. Sinclair, Effects of sintering temperature on the internal barrier layer ca-
pacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics, J. Eur. Ceram. Soc. 32
[16] J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández, Evolution of the
intergranular phase during sintering of CaCu3Ti4O12 ceramics, J. Eur. Ceram. Soc.
[17] R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, Non-stoichiometry in
F− substitution, RSC Adv.
[42] J. Jumpatam, N. Chanlek, M. Takesada, P. Thongbai, Giant dielectric behavior of
monovalent cation/anion (Li+, F−) co‐doped CaCu3Ti4O12 ceramics, J. Am. Ceram.
[43] A. Le Bail, Whole powder pattern decomposition methods and applications: a
[44] AENOR, ISO 13383–1:2016 Fine ceramics (advanced ceramics, advanced tech-
nical ceramics) - Microstructural characterization - Part 1: Determination of
grain size and size distribution (ISO 13383–1:2012), International Organization
for Standardization, Geneva, Switzerland, (2016), pp. 29.
[19] W.-X. Yuan, Z. Luo, C. Wang, Investigation on effects of CuO secondary phase on
dielectric properties of CaCu3Ti4O12 ceramics, J. Alloy. Compd. 562 (2013) 1–4,
[20] Y. Chen, Y. Teng, X. Zhao, L. Wu, Effect of synthesis process on CuO segregation
and dielectric properties of CaCu3Ti4O12 ceramic, J. Wuhan Univ. Technol. Mater.
[21] W. Li, L. Tang, F. Xue, Z. Xin, Z. Luo, G. Du, Large reduction of dielectric losses of
CaCu3Ti4O12 ceramics via air quenching, Ceram. Int. 43 (2017) 6618–6621,
[45] O.I. V’yunov, B.A. Konchus, O.Z. Yanchevskiy, A.G. Belous, Synthesis, properties
CaCu3Ti4O12 with colossal value of the dielectric permittivity, Ukr. Chem. J. 85
[46] F.-H. Lu, F.-X. Fang, Y.-S. Chen, Eutectic reaction between copper oxide and ti-
6