Paper
NJC
W. Wei, Z. S. Wu, X. L. Feng and K. Mu¨llen, J. Am. Chem.
Soc., 2013, 135, 16002.
catalysts possessed high surface area and well-dispersed metal
active sites. Compared to the two-step method, Co–N/C catalysts
supported on mesoporous carbon, hard-templating enabled the
synthesis of well-structured Co–N–C-10 catalysts significantly
enhancing the activity due to improved dispersibility of the
Co–N active sites. The mass ratio of sucrose to CoTPP influenced
the resulting catalyst performance significantly. In this respect,
the ratio of sucrose to CoTPP is 1 : 0.1 the best result, which was
attributed to the large mesopores derived from improved KIT-6
replication and high surface areas, thus facilitating the dispersi-
bility of the active sites within the catalyst. Applying the optimal
Co–N–C-10 catalyst, a wide range of arylalkane compounds were
oxidized to the corresponding ketone in excellent yields. This
strategy could be extended to immobilize other metal or metal
composite active sites into mesoporous silica structures.
6 (a) A. Grirrane, A. Corma and H. Garcia, Science, 2008, 322,
1661–1664; (b) R. Schlogl and S. B. Abd Hamid, Angew.
Chem., Int. Ed., 2004, 43, 1628–1637; (c) H. Wei, Y. Ren,
A. Wang, X. Liu, X. Liu, L. Zhang, S. Miao, L. Li, J. Liu,
J. Wang, G. Wang, D. Su and T. Zhang, Chem. Sci., 2017, 8,
5126–5131; (d) F. Leng, I. C. Gerber, P. Lecante, S. Moldovan,
M. Girleanu, M. R. Axet and P. Serp, ACS Catal., 2016, 6,
6018–6024.
7 (a) R. Brandiele, C. Durante, M. Zerbetto, N. Vicentini,
T. Kosmala, D. Badocco, P. Pastore, G. A. Rizzi, A. A. Isse and
A. Gennaro, Electrochim. Acta, 2018, 277, 287–300; (b) V. Perazzolo,
R. Brandiele, C. Durante, M. Zerbetto, V. Causin, G. A. Rizzi,
I. Cerri, G. Granozzi and A. Gennaro, ACS Catal., 2018, 8,
1122–1137; (c) Z. Chen, J. Zhang, S. K. Zheng, J. Ding, J. Q. Sun,
M. Dong, M. Abbas, Y. L. Chen, Z. Jiang and J. G. Chen, J. Mol.
Catal. A: Chem., 2018, 444, 90–99.
Conflicts of interest
8 (a) X. J. Cui, J. P. Xiao, Y. H. Wu, P. P. Du, R. Si, H. X. Yang,
H. F. Tian, J. Q. Li, W. H. Zhang, D. H. Deng and X. H. Bao,
Angew. Chem., Int. Ed., 2016, 55, 6708–6712; (b) M. Halma,
There are no conflicts to declare.
´
K. A. D. de Freitas Castro, V. Prevot, C. Forano, F. Wypych
Acknowledgements
and S. Nakagaki, J. Mol. Catal. A: Chem., 2009, 310, 42;
(c) G. S. Machado, K. A. D. de Freitas Castro, F. Wypych and
S. Nakagaki, J. Mol. Catal. A: Chem., 2008, 283, 99.
9 (a) S. S. Jie, Y. Chen, C. Q. Yang, X. Lin, R. L. Zhu and
Z. G. Liu, Catal. Commun., 2017, 100, 144–147; (b) X. Lin,
Z. Z. Nie, L. Y. Zhang, S. C. Mei, Y. Chen, B. S. Zhang,
R. L. Zhu and Z. G. Liu, Green Chem., 2017, 19, 2164–2173.
10 W. Li, J. Artz, C. Broicher, K. Junge, H. Hartmann, A. Besmehn,
R. Palkovites and M. Beller, Catal. Sci. Technol., 2019, 9, 157.
11 Z. Liu, L. Ji, X. Dong, Z. Li, L. Fu and Q. Wang, RSC Adv.,
2015, 5, 6259.
This work was supported by the State Key Laboratory of Heavy
Oil Processing in China (No. SKCHOP201504) and the National
Natural Science Foundation of China (No. 21872045).
Notes and references
1 (a) A. Dhakshinamoorthy, M. Latorre-Sanchez, A. M. Asiri,
A. Primo and H. Garcia, Catal. Commun., 2015, 65, 10;
(b) K. Ai, Y. Liu, C. Ruan, L. Lu and G. Lu, Adv. Mater.,
2013, 25, 998.
12 Y. Chen, S. S. Jie, C. Q. Yang and Z. G. Liu, Appl. Surf. Sci.,
2017, 419, 98–106.
2 (a) M. Chen, L. Wu, S. Zhou and B. You, Adv. Mater., 2006,
18, 801; (b) Y. Zhao, J. Zhang, W. Li, C. Zhang and B. Han,
Chem. Commun., 2009, 65; (c) J. Yuan, T. Zhou and H. Pu,
J. Phys. Chem. Solids, 2010, 71, 1013; (d) O. Emmerich,
N. Hugenberg, M. Schmidt, S. S. Sheiko, F. Baumann,
B. Deubzer, J. Weis and J. Ebenhoch, Adv. Mater., 1999,
11, 1299; (e) H. Djojoputro, X. F. Zhou, S. Z. Qiao, L. Z.
Wang, C. Z. Yu and G. Q. Lu, J. Am. Chem. Soc., 2006,
128, 6320.
13 (a) S. Shang, L. Wang, W. Dai, B. Chen, Y. Lv and S. Gao,
Catal. Sci. Technol., 2016, 6, 5746–5753; (b) C. Li, Z. Han,
Y. Yu, Y. Zhang, B. Dong, A. Kong and Y. Shan, RSC Adv.,
2016, 6, 15167–15174; (c) J. Ji, G. Zhang, H. Chen, S. Wang,
G. Zhang, F. Zhang and X. Fan, Chem. Sci., 2011, 2, 484.
14 (a) D. Formenti, F. Ferretti, C. Topf, A. Surkus, M. Pohl,
J. Radnik, M. Schneider, K. Junge, M. Beller and F. Ragaini,
J. Catal., 2017, 351, 79–89; (b) P. Hasin, V. Amornkitbamrung
and N. Chanlek, J. Catal., 2017, 351, 19–32.
3 (a) N. Anbazhagan, G. Imran, A. Qurashi, A. Pandurangan
and S. Manimaran, Microporous Mesoporous Mater., 2017,
247, 190–197; (b) F. Kleitz, D. Liu, G. M. Anilkumar, I. S. 15 (a) Q. Guan, J. L. Cheng, X. D. Li, W. Ni and B. Wang, Chin.
Park, L. A. Solovyov, A. N. Shmakov and R. Ryoo, J. Phys.
Chem. B, 2003, 107, 14296.
4 (a) Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su,
J. G. Wang, X. H. Bao and D. Ma, Angew. Chem., Int. Ed.,
J. Chem., 2017, 35, 48–54; (b) Y. T. Teng, S. S. Pramanaa,
J. F. Ding, T. Wu and R. Yazami, Electrochim. Acta, 2013, 107,
301–312; (c) Y. Duan, T. Song, X. Dong and Y. Yang, Green
Chem., 2018, 20, 2821–2828.
2013, 52, 2109; (b) J. Xu, K. Shen, B. Xue and Y. X. Li, J. Mol. 16 X. G. Duan, Z. M. Ao, H. Q. Sun, S. Indrawirawan, Y. X.
Catal. A: Chem., 2013, 372, 105; (c) Z. H. Sheng, H. L. Gao,
W. J. Bao, F. B. Wang and X. H. Xia, J. Mater. Chem., 2012,
22, 390.
Wang, J. Kang, F. L. Liang, Z. H. Zhu and S. B. Wang,
ACS Appl. Mater. Interfaces, 2015, 7, 4169–4178.
17 Y. Ito, W. Cong, T. Fujita, Z. Tang and M. Chen, Angew.
Chem., Int. Ed., 2015, 127, 2159–2164.
5 (a) Y. Zhao, K. Watanabe and K. Hashimoto, J. Am. Chem.
Soc., 2012, 134, 19528; (b) M. Lefevre, E. Proietti, F. Jaouen 18 C. H. Choi, S. H. Park and S. I. Woo, ACS Nano, 2012, 6,
and J. P. Dodelet, Science, 2009, 324, 71; (c) H. W. Liang, 7084–7091.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019