Journal of the American Chemical Society
Article
4′-Carboxylate Complex with a Long Distance Between the Redox
and Basic Sites. J. Am. Chem. Soc. 2008, 130, 7210−7211.
(41) Yurino, T.; Ueda, Y.; Shimizu, Y.; Tanaka, S.; Nishiyama, H.;
Tsurugi, H.; Sato, K.; Mashima, K. Salt-Free Reduction of
Nonprecious Transition-Metal Compounds: Generation of Amor-
phous Ni Nanoparticles for Catalytic C−C Bond Formation. Angew.
Chem., Int. Ed. 2015, 54, 14437−14441.
́
(23) Carroll, T. G.; Garwick, R.; Telser, J.; Wu, G.; Menard, G.
Synthesis, Characterization, and Electrochemical Analyses of
Vanadocene Tetrametaphosphate and Phosphinate Derivatives.
Organometallics 2018, 37, 848−854.
(42) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen,
A. G.; Taylor, R. Tables of bond lengths determined by X-ray and
neutron diffraction. Part 1. Bond lengths in organic compounds. J.
Chem. Soc., Perkin Trans. 2 1987, S1−S19.
́
(24) Carroll, T. G.; Garwick, R.; Wu, G.; Menard, G. A Mono-, Di-,
and Trivanadocene Phosphorus Oxide Series: Synthesis, Magnetism,
and Chemical/Electrochemical Properties. Inorg. Chem. 2018, 57,
11543−11551.
(43) Agarwal, P.; Piro, N. A.; Meyer, K.; Muller, P.; Cummins, C. C.
̈
An Isolable and Monomeric Phosphorus Radical That Is Resonance-
Stabilized by the Vanadium(IV/V) Redox Couple. Angew. Chem., Int.
Ed. 2007, 46, 3111−3114.
(25) Fleming, I. Tilden Lecture. Some uses of silicon compounds in
organic synthesis. Chem. Soc. Rev. 1981, 10, 83−111.
(26) Hwu, J. R.; Wetzel, J. M. The trimethylsilyl cationic species as a
bulky proton. Application to chemoselective dioxolanation. J. Org.
Chem. 1985, 50, 3946−3948.
(44) Back, O.; Donnadieu, B.; von Hopffgarten, M.; Klein, S.;
Tonner, R.; Frenking, G.; Bertrand, G. N-Heterocyclic carbenes
versus transition metals for stabilizing phosphinyl radicals. Chem. Sci.
2011, 2, 858−861.
(27) Hwu, J. R.; Khoudhary, k. P.; Tsay, S.-C. Selectivity of the bulky
proton-containing reagent N-methyl-N,O-bis(trimethylsilyl)-
hydroxylamine in the formation of nitrones. J. Organomet. Chem.
1990, 399, C13−C17.
(45) Mayer, J. M.; Rhile, I. J. Thermodynamics and kinetics of
proton-coupled electron transfer: stepwise vs. concerted pathways.
Biochim. Biophys. Acta, Bioenerg. 2004, 1655, 51−58.
(46) Dissolving 2a in neat [TMS][OTf] (a very large excess)
resulted in a shifted 51V NMR resonance analogous to 2a-Si+ and
indicative of a shifted equilibrium. Removing the [TMS][OTf] in
vacuo resulted in the regeneration of 2a.
(47) Lambert, J. B.; Zhang, S.; Ciro, S. M. Silyl Cations in the Solid
and in Solution. Organometallics 1994, 13, 2430−2443.
(48) Bassindale, A. R.; Stout, T. The interaction of electrophilic
silanes (Me3SiX, X = ClO4, I, CF3SO3, Br, Cl) with nucleophiles. The
nature of silylation mixtures in solution. Tetrahedron Lett. 1985, 26,
3403−3406.
(49) Robertson, A. P. M.; Chitnis, S. S.; Chhina, S.; Cortes S, H. J.;
Patrick, B. O.; Jenkins, H. A.; Burford, N. Complexes of trimethylsilyl
trifluoromethanesulfonate with nitrogen, oxygen, and phosphorus
donors. Can. J. Chem. 2016, 94, 424−429.
(50) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-
range corrected hybrid density functionals. J. Chem. Phys. 2008, 128,
084106.
(51) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid
density functionals with damped atom−atom dispersion corrections.
Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.
(28) Song, J.-I.; Gambarotta, S. Preparation, Characterization, and
Reactivity of a Diamagnetic Vanadium Nitride. Chem. - Eur. J. 1996, 2,
1258−1263.
(29) Sharova, E. V.; Genkina, G. K.; Matveeva, E. V.; Goryunova, I.
B.; Goryunov, E. I.; Artyushin, O. I.; Brel, V. K. Phosphorylation of
cytisine using azidealkyne click chemistry. Russ. Chem. Bull. 2014,
63, 2546−2550.
(30) CCDC 1862640−1862647 contain the supplementary
crystallographic data for this paper. These data are provided free of
charge by the Cambridge Crystallographic Data Centre.
(31) Porter, T. R.; Capitao, D.; Kaminsky, W.; Qian, Z.; Mayer, J. M.
Synthesis, Radical Reactivity, and Thermochemistry of Monomeric
Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol
Oxidation Catalysis. Inorg. Chem. 2016, 55, 5467−5475.
(32) Pappas, I.; Chirik, P. J. Catalytic Proton Coupled Electron
Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and
Imides: Determination of Thermodynamic Parameters Relevant to
Nitrogen Fixation. J. Am. Chem. Soc. 2016, 138, 13379−13389.
(33) Piper, T. S.; Wilkinson, G. Alkyl and aryl derivatives of π-
cyclopentadienyl compounds of chromium, molybdenum, tungsten,
and iron. J. Inorg. Nucl. Chem. 1956, 3, 104−124.
(34) Kubas, G. J.; Kiss, G.; Hoff, C. D. Solution calorimetric,
equilibrium, and synthetic studies of oxidative addition/reductive
elimination of cyclopentadiene derivatives, C5R5H (R = H, Me,
indenyl), to/from the metal complexes M(CO)3(RCN)3/(η5-C5R5)-
M(CO)3H (M = chromium, molybdenum, tungsten). Organometallics
1991, 10, 2870−2876.
(35) Birdwhistell, R.; Hackett, P.; Manning, A. R. A simple and
effective preparation of (η-RC5H4)2M2(CO)6 complexes (M Cr, Mo,
and W). J. Organomet. Chem. 1978, 157, 239−241.
(36) Choi, J.; Tang, L.; Norton, J. R. Kinetics of Hydrogen Atom
Transfer from (η5-C5H5)Cr(CO)3H to Various Olefins: Influence of
Olefin Structure. J. Am. Chem. Soc. 2007, 129, 234−240.
(37) Sulzbach, R. A.; Iqbal, A. F. M. 1,4-Bis(trimethylsilyl)-1,4-
dihydropyrazine by Reductive Silylation of Pyrazine. Angew. Chem.,
Int. Ed. 1971, 10, 127−127.
(38) Kaim, W. Effects of cyclic 8π-electron conjugation in
reductively silylated nitrogen heterocycles. J. Am. Chem. Soc. 1983,
105, 707−713.
(52) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.
(53) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G.
A.; Boyd, P. D. W. Relativistic effects in gold chemistry. I. Diatomic
gold compounds. J. Chem. Phys. 1989, 91, 1762−1774.
̌
(54) Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a
solute with a continuum. A direct utilizaion of AB initio molecular
potentials for the prevision of solvent effects. Chem. Phys. 1981, 55,
117−129.
(55) Cammi, R.; Tomasi, J. Remarks on the use of the apparent
surface charges (ASC) methods in solvation problems: Iterative
versus matrix-inversion procedures and the renormalization of the
apparent charges. J. Comput. Chem. 1995, 16, 1449−1458.
(56) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for
Organometallic Chemistry. Chem. Rev. 1996, 96, 877−910.
(57) Noviandri, I.; Brown, K. N.; Fleming, D. S.; Gulyas, P. T.; Lay,
P. A.; Masters, A. F.; Phillips, L. The Decamethylferrocenium/
Decamethylferrocene Redox Couple: A Superior Redox Standard to
the Ferrocenium/Ferrocene Redox Couple for Studying Solvent
Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B
1999, 103, 6713−6722.
(39) Saito, T.; Nishiyama, H.; Tanahashi, H.; Kawakita, K.; Tsurugi,
H.; Mashima, K. 1,4-Bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadienes
as Strong Salt-Free Reductants for Generating Low-Valent Early
Transition Metals with Electron-Donating Ligands. J. Am. Chem. Soc.
2014, 136, 5161−5170.
(40) Saito, T.; Nishiyama, H.; Kawakita, K.; Nechayev, M.; Kriegel,
B.; Tsurugi, H.; Arnold, J.; Mashima, K. Reduction of (tBuN)-
NbCl3(py)2 in a Salt-Free Manner for Generating Nb(IV) Dinuclear
Complexes and Their Reactivity toward Benzo[c]cinnoline. Inorg.
Chem. 2015, 54, 6004−6009.
(58) Yang, J.-D.; Ji, P.; Xue, X.-S.; Cheng, J.-P. Recent Advances and
Advisable Applications of Bond Energetics in Organic Chemistry. J.
Am. Chem. Soc. 2018, 140, 8611−8623.
(59) Belford, R. L.; Belford, G. G. Eigenfield expansion technique for
efficient computation of field-swept fixed-frequency spectra from
relaxation master equations. J. Chem. Phys. 1973, 59, 853−854.
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX