Organic Process Research & Development 2008, 12, 946–949
Continuous Organic Synthesis in a Spinning Tube-in-Tube Reactor: TEMPO-Catalyzed
Oxidation of Alcohols by Hypochlorite
Philip D. Hampton,* Matthew D. Whealon, Lisa M. Roberts, Andrew A. Yaeger, and Rick Boydson
Department of Chemistry, California State UniVersity Channel Islands, Camarillo, California 93012, U.S.A.
Abstract:
synthesis of HIV-1 protease inhibitor DMP 323.1 Perhaps the
most useful conditions for this conversion involve the 2,2,6,6-
tetramethyl-4-X-1-piperidinyloxy (4-X-TEMPO: X ) H, OH,
OCH3, NHC(dO)CH3)-catalyzed oxidation of alcohols by
sodium hypochlorite.1–4 Typical conditions involve the slow
addition of sodium hypochlorite buffered with sodium bicar-
bonate to a biphasic mixture of aqueous sodium or potassium
bromide and an organic phase consisting of the alcohol and
4-X-TEMPO (X ) H, OCH3) in toluene, toluene/ethyl acetate,
or CH2Cl2. Efficient temperature control and rapid mixing
(mechanical stirring at or above 1000 RPM) are both necessary
to avoid heat build-up resulting from this highly exothermic
reaction; slow addition of the hypochlorite is frequently used
to control the temperature in this reaction.1a,3c–f,4 Polymer-bound
TEMPO catalysts show comparable or higher reactivity in this
oxidation reaction and offer the advantage of facile catalyst
recovery.2c,5
As a result of the requirement of this reaction for efficient
mixing and heat removal, we became interested in examining
the potential of running this reaction in a rapid-mixing,
continuous-flow reactor, called a spinning tube-in-tube (STT)
reactor manufactured by Kreido Biofuels.6 This research
describes the first demonstration of the continuous production
of aldehydes in high yields using the TEMPO-catalyzed
oxidation of alcohols by hypochlorite in an STT reactor. While
this work was being conducted, Friz-Langhals reported that the
4-hydroxy-TEMPO-catalyzed oxidation of two alcohols, 2-bu-
toxyethanol and 2-hydroxyethyl 2-methylpropanoate, by sodium
hypochlorite could be performed continuously in a simple 3
mm diameter static mixer tube reactor resulting in the oxidation
of ꢀ-substituted alcohols to the corresponding aldehydes in
yields of 60-77%.4
Continuous production of aldehydes in high yields (g90%) can
be accomplished by feeding aqueous (sodium hypochlorite/sodium
bicarbonate, pH 8.5) and organic (TEMPO/tetrabutylammonium
bromide/primary alcohol/toluene or CH2Cl2) solutions through the
inlets of a spinning tube-in-tube reactor (STT reactor manufac-
tured by Kreido Biofuels [STT is a registered trademark of Kreido
Biofuels]) at rotor speeds of 4000-6000 RPM with residence times
as short as 1-2 min. This approach eliminates the need for slow
addition of the bleach reagent to control this exothermic reaction.
Introduction
The TEMPO-catalyzed oxidation of alcohols to aldehydes
and ketones is an important transformation for pharmaceutical
synthesis as a result of the selectivity of the reaction between
primary and secondary alcohols and the absence of malodorous
(Swern oxidation) or hazardous (chromium oxidation) side
products.1–5 An example of the application of this reaction in
pharmaceutical chemistry can be seen in the DuPont Merck
* Corresponding author. E-mail: Philip.Hampton@csuci.edu. Telephone: 805-
437-8869. Fax: 805-437-8895.
(1) (a) Pierce, M. E.; Harris, G. D.; Islam, Q.; Radesca, L. A.; Storace, L.;
Waltermire, R. E.; Wat, E.; Jadhav, P. K.; Emmett, G. C. J. Org. Chem.
1996, 61, 444. (b) Confalone, P. N.; Waltermire, R. E. In Process
Chemistry in the Pharmaceutical Industry; Gadamasetti, K. G., Ed.;
Marcell Dekker, Inc.: New York, NY, 1999; pp 205-208.
(2) For a review of this reaction, see: (a) de Nooy, A. E. J.; Besemer, A. C.;
van Bekkum, H. Synthesis 1996, 1153. (b) Adam, W.; Saha-Mo¨ller,
C. R.; Ganeshpure, P. A. Chem. ReV. 2001, 101, 3499. (c) Sheldon,
R. A.; Arends, I. W. C. E.; Brink, G.-J. TB.; Dijksman, A. Acc. Chem.
Res. 2002, 35, 774. (d) Sheldon, R. A.; Arends, I. W. C. E. AdV. Synth.
Catal. 2004, 346, 1051. (e) Sheldon, R. A.; Arends, I. W. C. E. J. Mol.
Catal. A: Chem. 2006, 251, 200.
(3) (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987,
52, 2559. (b) Anelli, P. L.; Banfi, S; Montanari, F.; Quici, S. J. Org.
Chem. 1989, 54, 2970. (c) Tong, G.; Perich, J. W.; Johns, R. B.
Tetrahedron Lett. 1990, 31, 3759. (d) Siedlecka, R.; Skarz˙ewski, J.;
Młochowski, J. Tetrahedron Lett. 1990, 31, 2177. (e) Leanna, M. R.;
Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33, 5029. (f)
Jurczak, J.; Gryko, D.; Kobrzycka, E.; Gruza, H.; Prokopowicz, P.
Tetrahedron 1998, 54, 6051. (g) Csuk, R.; Schmuck, K.; Scha¨fer, R.
Tetrahedron Lett. 2006, 47, 8769.
A picture of an STT reactor is shown in Figure 1 and a
schematic cross-section of an STT reactor is provided in Figure
2. The basic design of an STT reactor involves the introduction
of reactants into the gap (0.25-0.38 mm) between a rapidly
rotated (100-12000 RPM) solid or hollow rotor and a stationary
outer cylinder (referred to as the “stator”). Heat-exchangers
surround the stator and allow for efficient temperature control
of the contents of the reactor along the length of the stator.
With a rotor-stator gap of 0.25 mm and a rotor working length
of 10.1 cm, a Magellan STT reactor has a cavity volume
between the rotor and stator of 1.43 mL. Kreido Biofuels also
(4) Fritz-Langhals, E. Org. Process Res. DeV. 2005, 9, 577.
(5) (a) Dijskman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Commun.
2000, 271. (b) Dijskman, A.; Arends, I. W. C. E.; Sheldon, R. A. Synlett
2001, 102. (c) Dijskman, A.; Arends, I. W. C. E.; Sheldon, R. A. Special
Publ. Royal Soc. Chem. 2001, 266, 118. (d) Burkhardt, O.; Woeltinger,
J.; Karau, A.; Philippe, J.-L.; Henniges, H.; Bommarius, A.; Krimmer,
H.-P.; Drauz, K. U.S. Patent 6,451,943 B1, 2002. (e) Tanyeli, C.;
Gu¨mu¨s¸, A. Tetrahedron Lett. 2003, 44, 1639. (f) Ferreira, P.; Phillips,
E.; Rippon, D.; Tsang, S. C.; Hayes, W. J. Org. Chem. 2004, 69, 6851.
(g) Ferreira, P.; Hayes, W.; Phillips, E.; Rippon, D.; Tsang, S. C. Green
Chem. 2004, 6, 310. (h) Pozzi, G.; Cavazzini, M.; Quici, S.; Benaglia,
M.; Dell’ Anna, G. Org. Lett. 2004, 6, 441. (i) Gilhespy, M.; Lok, M.;
Baucherel, X. Catal. Today 2006, 117, 114. (j) Michaud, A.; Gingras,
G.; Morin, M.; Be´land, F.; Ciriminna, R.; Avnir, D.; Pagliaro, M. Org.
Process Res. DeV. 2007, 11, 766.
(6) STT, Magellan, and Innovator are registered trademarks of Kreido
Biofuels, formerly Holl Technologies Corporation and Kreido Labo-
ratories. (a) Holl, R.; Gulliver, E.; Hall, N.; Sojka, S. InnoV. Pharm.
Technol. 2003, 30, 116. (b) Cihonski, J. Pristine Processing 2004, 25.
(c) Holl, R. A.; McGrevy, A. N. U.S. Patent 6,471,392, 2002. (d) Holl,
R. A. U.S. Patent 6,752,529, 2004.
946
•
Vol. 12, No. 5, 2008 / Organic Process Research & Development
10.1021/op800051t CCC: $40.75
2008 American Chemical Society
Published on Web 08/07/2008